Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 26(15): 3004-3009, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38573817

RESUMO

A well-defined Ru(II)-PNP complex demonstrated high activity in the anti-Markovnikov hydroalkylation of nonpolarized terminal alkenes via hydrazones. Hydrazone served as a carbanion equivalent to combine with the electrophilic alkene substrate upon activation by the ruthenium catalyst, forming a new C-C bond in a concerted pathway with N2 as the only theoretical byproduct. Experimental and computational studies suggested the existence of a push-pull interaction that activated the alkene for hydrazone addition and then deduced the mechanism.

2.
Nat Commun ; 15(1): 1953, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438387

RESUMO

Despite enormous interest in two-dimensional (2D) carbon allotropes, discovering stable 2D carbon structures with practically useful electronic properties presents a significant challenge. Computational modeling in this work shows that fusing azulene-derived macrocycles - azulenoid kekulenes (AK) - into graphene leads to the most stable 2D carbon allotropes reported to date, excluding graphene. Density functional theory predicts that placing the AK units in appropriate relative positions in the graphene lattice opens the 0.54 eV electronic bandgap and leads to the appearance of the remarkable 0.80 eV secondary gap between conduction bands - a feature that is rare in 2D carbon allotropes but is known to enhance light absorption and emission in 3D semiconductors. Among porous AK structures, one material stands out as a stable narrow-multigap (0.36 and 0.56 eV) semiconductor with light charge carriers (me = 0.17 m0, mh = 0.19 m0), whereas its boron nitride analog is a wide-multigap (1.51 and 0.82 eV) semiconductor with light carriers (me = 0.39 m0, mh = 0.32 m0). The multigap engineering strategy proposed here can be applied to other carbon nanostructures creating novel 2D materials for electronic and optoelectronic applications.

3.
J Phys Chem A ; 125(29): 6332-6347, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34270256

RESUMO

Metal binding affinities play a vital role in medicinal, biological, and industrial applications. In particular, metal cation-amino acid (AA) interactions contribute to protein stability such that analyzing analogous prototypical interactions is important. Here, we present a full description of the interactions of sodium cations (Na+) and six aliphatic amino acids (AA), where AA = glycine (Gly), alanine (Ala), homoalanine (hAla), valine (Val), leucine (Leu), and isoleucine (Ile). Experimentally, these interactions are evaluated using threshold collision-induced dissociation carried out in a guided ion beam tandem mass spectrometer, allowing for the determination of the kinetic-energy-dependent behavior of Na+-AA dissociation. Analysis of these dissociation cross sections, after accounting for multiple ion-molecule collisions, internal energy of reactant ions, and unimolecular decay rates, allows the determination of absolute Na+-AA bond dissociation energies (BDEs) in kJ/mol of Gly (164.0), Ala (166.9), hAla (167.9), Val (172.7), Leu (173.7), and Ile (174.6). These are favorably compared to quantum chemical calculations conducted at the B3LYP, B3P86, MP2(full), B3LYP-GD3BJ, and M06-2X levels of theory. Our combination of structural and energetic analyses provides information regarding the specific factors responsible for Na+ interactions with amino acids. Specifically, we find that the BDEs increase linearly with increasing polarizability of the amino acid.


Assuntos
Aminoácidos/metabolismo , Sódio/metabolismo , Aminoácidos/química , Entropia , Ligantes , Modelos Químicos , Conformação Molecular , Sódio/química
4.
Chem Sci ; 10(47): 10937-10943, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32190250

RESUMO

Efficient carbon-carbon bond formation is of great importance in modern organic synthetic chemistry. The pinacol coupling discovered over a century ago is still one of the most efficient coupling reactions to build the C-C bond in one step. However, traditional pinacol coupling often requires over-stoichiometric amounts of active metals as reductants, causing long-lasting metal waste issues and sustainability concerns. A great scientific challenge is to design a metal-free approach to the pinacol coupling reaction. Herein, we describe a light-driven pinacol coupling protocol without use of any metals, but with N2H4, used as a clean non-metallic hydrogen-atom-transfer (HAT) reductant. In this transformation, only traceless non-toxic N2 and H2 gases were produced as by-products with a relatively broad aromatic ketone scope and good functional group tolerance. A combined experimental and computational investigation of the mechanism suggests that this novel pinacol coupling reaction proceeds via a HAT process between photo-excited ketone and N2H4, instead of the common single-electron-transfer (SET) process for metal reductants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA