RESUMO
BACKGROUND: Vietnam is a lower middle-income country with no national surveillance system for hospital-acquired infections (HAIs). We assessed the prevalence of hospital-acquired infections and antimicrobial use in adult intensive care units (ICUs) across Vietnam. METHODS: Monthly repeated point prevalence surveys were systematically conducted to assess HAI prevalence and antimicrobial use in 15 adult ICUs across Vietnam. Adults admitted to participating ICUs before 08:00 a.m. on the survey day were included. RESULTS: Among 3287 patients enrolled, the HAI prevalence was 29.5% (965/3266 patients, 21 missing). Pneumonia accounted for 79.4% (804/1012) of HAIs Most HAIs (84.5% [855/1012]) were acquired in the survey hospital with 42.5% (363/855) acquired prior to ICU admission and 57.5% (492/855) developed during ICU admission. In multivariate analysis, the strongest risk factors for HAI acquired in ICU were: intubation (OR 2.76), urinary catheter (OR 2.12), no involvement of a family member in patient care (OR 1.94), and surgery after admission (OR 1.66). 726 bacterial isolates were cultured from 622/1012 HAIs, most frequently Acinetobacter baumannii (177/726 [24.4%]), Pseudomonas aeruginosa (100/726 [13.8%]), and Klebsiella pneumoniae (84/726 [11.6%]), with carbapenem resistance rates of 89.2%, 55.7%, and 14.9% respectively. Antimicrobials were prescribed for 84.8% (2787/3287) patients, with 73.7% of patients receiving two or more. The most common antimicrobial groups were third generation cephalosporins, fluoroquinolones, and carbapenems (20.1%, 19.4%, and 14.1% of total antimicrobials, respectively). CONCLUSION: A high prevalence of HAIs was observed, mainly caused by Gram-negative bacteria with high carbapenem resistance rates. This in combination with a high rate of antimicrobial use illustrates the urgent need to improve rational antimicrobial use and infection control efforts.
Assuntos
Antibacterianos/uso terapêutico , Infecção Hospitalar/epidemiologia , Controle de Infecções , Unidades de Terapia Intensiva , Acinetobacter baumannii/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana , Feminino , Humanos , Klebsiella pneumoniae/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Prevalência , Pseudomonas aeruginosa/isolamento & purificação , Vietnã/epidemiologiaRESUMO
A significant problem in flexor tendon repair is the lack of suitable graft material for reconstruction. The ex vivo production of flexor tendon graft constructs requires the expansion of primary cells. Growth factors, such as platelet-derived growth factor-BB (PDGF-BB), insulin-like growth factor-1 (IGF-1), and basic fibroblast growth factor (bFGF), are known to promote tendon healing and tendon cell proliferation. The purpose of these experiments was to optimize tenocyte proliferation in 3 tendon cell populations using growth factor supplementation. Cells of the synovial sheath, epitenon, and endotenon were isolated from rabbit flexor digitorum profundus tendons and maintained in culture. Cell cultures were supplemented with IGF-1, PDGF-BB, and bFGF alone and in combination. The conditions used for individual growth factor supplementation were IGF-1 (10, 50, and 100 ng/mL), PDGF-BB (1, 10, and 50 ng/mL), and bFGF (0.5, 1, and 5 ng/mL). The conditions used for combinations of growth factors were IGF-1 + PDGF-BB (50 + 10 and 100 + 50 ng/mL, respectively) and IGF-1 + PDGF-BB+ bFGF (50 + 10 + 1; 50 + 10 + 5; 100 + 50 + 1; and 100 + 50 + 5 ng/mL, respectively). For all 3 tendon cell populations, proliferation at 72 h was greater in the presence of individual growth factors as compared to controls. With PDGF-BB (50 ng/mL) supplementation, mean absorbance values increased 97% (0.57 to 1.13) in S cells, 37% (0.51 to 0.70) in E cells, and 33% (0.33 to 0.44) in T cells ( p < 0.001). In addition, a synergistic effect was observed. The combination of growth factors resulted in greater proliferation as compared to maximal doses of individual growth factors. In cultures supplemented with IGF-1 (100 ng/mL) +PDGF-BB (50 ng/mL), mean absorbance increased 114% (0.57 to 1.22) in S cells, 63% (0.51 to 0.831) in E cells, and 47% (0.33 to 0.48) in T cells ( p < 0.001). IGF-1 (100 ng/mL) + PDGF-BB (50 ng/mL) + bFGF (5 ng/mL) resulted in the greatest amount of cell proliferation for all 3 tendon cell populations. The mean absorbances increased 251% in S cells, 98% in E cells, and 106% in T cells ( p < 0.001). In summary, IGF-1, PDGF-BB, and bFGF can be used in combination to maximize tenocyte proliferation. Synergism among growth factors may provide a means to facilitate tendon engineering.