Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; : e2400042, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593378

RESUMO

Tracing fast nanopore-translocating analytes requires a high-frequency measurement system that warrants a temporal resolution better than 1 µs. This constraint may practically shift the challenge from increasing the sampling bandwidth to dealing with the rapidly growing noise with frequencies typically above 10 kHz, potentially making it still uncertain if all translocation events are unambiguously captured. Here, a numerical simulation model is presented as an alternative to discern translocation events with different experimental settings including pore dimension, bias voltage, the charge state of the analyte, salt concentration, and electrolyte viscosity. The model allows for simultaneous analysis of forces exerting on a large analyte cohort along their individual trajectories; these forces are responsible for the analyte movement leading eventually to the nanopore translocation. Through tracing the analyte trajectories, the Brownian force is found to dominate the analyte movement in electrolytes until the last moment at which the electroosmotic force determines the final translocation act. The mean dwell time of analytes mimicking streptavidin decreases from ≈6 to ≈1 µs with increasing the bias voltage from ±100 to ±500 mV. The simulated translocation events qualitatively agree with the experimental data with streptavidin. The simulation model is also helpful for the design of new solid-state nanopore sensors.

2.
ACS Nano ; 15(11): 17938-17946, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34762404

RESUMO

Solid-state nanopores of on-demand dimensions and shape can facilitate desired sensor functions. However, reproducible fabrication of arrayed nanopores of predefined dimensions remains challenging despite numerous techniques explored. Here, bowl-shaped nanopores combining properties of ultrathin membrane and tapering geometry are manufactured using a self-limiting process developed on the basis of standard silicon technology. The upper opening of the bowl-nanopores is 60-120 nm in diameter, and the bottom orifice reaches sub-5 nm. Current-voltage characteristics of the fabricated bowl-nanopores display insignificant rectification indicating weak ionic selectivity, in accordance to numerical simulations showing minor differences in electric field and ionic velocity upon the reversal of bias voltages. Simulations reveal, concomitantly, high-momentum electroosmotic flow downward along the concave nanopore sidewall. Collisions between the left and right tributaries over the bottom orifice drive the electroosmotic flow both up into the nanopore and down out of the nanopore through the orifice. The resultant asymmetry in electrophoretic-electroosmotic force is considered the cause responsible for the experimentally observed strong directionality in λ-DNA translocation with larger amplitude, longer duration, and higher frequencies for the downward movements from the upper opening than the upward ones from the orifice. Thus, the resourceful silicon nanofabrication technology is shown to enable nanopore designs toward enriching sensor applications.


Assuntos
Nanoporos , Silício , DNA , Eletro-Osmose , Compostos de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA