Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22159, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333557

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive. Here, we performed an in-silico analysis approach on publicly available datasets to examine the function of N-glycosylation-related genes in GSCs and gliomas, accompanied by a qRT-PCR validation experiment. We found that high α-1,2-mannosidase MAN1C1 is associated with immunological functions and worse survival of glioma patients. Differential gene expression analysis and qRT-PCR validation revealed that MAN1C1 is highly expressed in GSCs. Furthermore, higher MAN1C1 expression predicts worse outcomes in glioma patients. Also, MAN1C1 expression is increased in the perinecrotic region of GBM and is associated with immunological and inflammatory functions, a hallmark of the GBM mesenchymal subtype. Further analysis confirmed that MAN1C1 expression is closely associated with infiltrating immune cells and disrupted immune response in the GBM microenvironment. These suggest that MAN1C1 is a potential biomarker for gliomas and may be important as an immunotherapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioma , Manosidases , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/imunologia , Prognóstico , Manosidases/metabolismo , Manosidases/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Glioma/imunologia , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/mortalidade , Masculino , Feminino , Glicosilação
2.
Methods ; 229: 133-146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944134

RESUMO

Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.


Assuntos
Máquina de Vetores de Suporte , Aprendizado de Máquina , Biologia Computacional/métodos , Software , Sequência de Aminoácidos/genética , Bases de Dados de Proteínas
3.
Comput Biol Med ; 169: 107848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145601

RESUMO

Dihydrouridine (DHU, D) is one of the most abundant post-transcriptional uridine modifications found in tRNA, mRNA, and snoRNA, closely associated with disease pathogenesis and various biological processes in eukaryotes. Identifying D sites is important for understanding the modification mechanisms and/or epigenetic regulation. However, biological experiments for detecting D sites are time-consuming and expensive. Given these challenges, computational methods have been developed for accurately identifying the D sites in genome-wide datasets. However, existing methods have some limitations, and their prediction performance needs to be improved. In this work, we have developed a new computational predictor for accurately identifying D sites called Stack-DHUpred. Briefly, we trained 66 baseline models or single-feature models by connecting six machine learning classifiers with eleven different feature encoding methods and stacked different baseline models to build stacked ensemble learning models. Subsequently, the optimal combination of the baseline models was identified for the construction of the final stacked model. Remarkably, the Stack-DHUpred outperformed the existing predictors on our new independent dataset, indicating that the stacking approach significantly improved the prediction performance. We have made Stack-DHUpred available to the public through a web server (http://kurata35.bio.kyutech.ac.jp/Stack-DHUpred) and a standalone program (https://github.com/kuratahiroyuki/Stack-DHUpred). We believe that Stack-DHUpred will be a valuable tool for accelerating the discovery of D modifications and understanding their role in post-transcriptional regulation.


Assuntos
Epigênese Genética , Genoma , RNA Mensageiro , Biologia Computacional
4.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058187

RESUMO

The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fosforilação , SARS-CoV-2/metabolismo , Serina/metabolismo , Treonina/metabolismo
5.
Proteomics ; 23(13-14): e2200409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021401

RESUMO

Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Humanos , Biologia Computacional/métodos , Algoritmos , Aprendizado de Máquina
6.
Research (Wash D C) ; 6: 0016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930763

RESUMO

Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development of machine learning (ML)-based models using characterized sequences and evaluating blind predictions is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an integrated computational framework for the accurate identification of symptoms (mild or severe) based on TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different feature encodings and hybrid features from the training data and then explored 8 different classifiers and developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, whose predicted class labels were combined and considered as reduced features. On the basis of these features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA