Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4340, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25004933

RESUMO

Using a whole-genome-sequencing approach to explore germplasm resources can serve as an important strategy for crop improvement, especially in investigating wild accessions that may contain useful genetic resources that have been lost during the domestication process. Here we sequence and assemble a draft genome of wild soybean and construct a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. We use a combination of de novo sequencing data from this work and our previous germplasm re-sequencing data to identify a novel ion transporter gene, GmCHX1, and relate its sequence alterations to salt tolerance. Rapid gain-of-function tests show the protective effects of GmCHX1 towards salt stress. This combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing and functional analyses can serve as an effective strategy to unveil novel genomic information in wild soybean to facilitate crop improvement.


Assuntos
Genoma de Planta , Glycine max/genética , Bombas de Íon/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Mapeamento Cromossômico , Genótipo , Bombas de Íon/metabolismo , Dados de Sequência Molecular , Locos de Características Quantitativas , Cloreto de Sódio/metabolismo , Glycine max/fisiologia
2.
Plant Cell Environ ; 35(11): 1932-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22548236

RESUMO

The BURP-domain protein family comprises a diverse group of plant-specific proteins that share a conserved BURP domain at the C terminus. However, there have been only limited studies on the functions and subcellular localization of these proteins. Members of the RD22-like subfamily are postulated to associate with stress responses due to the stress-inducible nature of some RD22-like genes. In this report, we used different transgenic systems (cells and in planta) to show that the expression of a stress-inducible RD22-like protein from soybean (GmRD22) can alleviate salinity and osmotic stress. We also performed detailed microscopic studies using both fusion proteins and immuno-electron microscopic techniques to demonstrate the apoplast localization of GmRD22, for which the BURP domain is a critical determinant of the subcellular localization. The apoplastic GmRD22 interacts with a cell wall peroxidase and the ectopic expression of GmRD22 in both transgenic Arabidopsis thaliana and transgenic rice resulted in increased lignin production when subjected to salinity stress. It is possible that GmRD22 regulates cell wall peroxidases and hence strengthens cell wall integrity under such stress conditions.


Assuntos
Glycine max/genética , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Motivos de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Oryza/genética , Pressão Osmótica , Peroxidase/metabolismo , Filogenia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Glycine max/metabolismo , Glycine max/fisiologia , Nicotiana/genética
3.
Physiol Plant ; 135(4): 412-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19210751

RESUMO

Previous studies on the interaction between environmental inorganic phosphate (Pi) and salinity stress using soybean cultivars sensitive to high external Pi had two limitations: (1) the phenotype was dominated by overaccumulation of phosphorus (P); and (2) no detailed analysis was performed for sodium ion uptake. In this study, we focused on the effects of high external Pi on the sodium ion uptake in 'Pi-tolerant' soybean cultivars. The P accumulation in Pi-tolerant soybean Union was much lower [9.0 mg g(-)(1) dry weight (DW); contrasting to 38-76 mg g(-)(1) DW in the 'Pi-sensitive' soybean cultivars]. At in planta level, high level of external Pi significantly (P < 0.001) increased net sodium ion uptake and aggravated salinity stress symptoms. The effects of high external Pi diminished when de-rooted plants were used, suggesting that root is the primary organ interacting with Pi in the growth medium. Two-cell models, including soybean suspension cells and the tobacco Bright Yellow-2 cell line, were also employed to study the effects of high external Pi at the cellular level. Consistent to in planta results, high external Pi uplifted cellular sodium ion uptake and reduced cell viability under salinity stress. Gene expression analyses further showed that HPi (2 mM Pi supplements; excessive level of Pi) could reduce the fold of induction of GmSOS1 and GmCNGC under salinity stress, suggesting that they may be possible molecular targets involved in the interaction between high external Pi and Na(+) uptake.


Assuntos
Glycine max/metabolismo , Fosfatos/metabolismo , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica de Plantas , RNA de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Glycine max/genética , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
4.
J Integr Plant Biol ; 50(10): 1196-212, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19017107

RESUMO

Soybean is an important cash crop and its productivity is significantly hampered by salt stress. High salt imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (i) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to describe its salt stress responses at the molecular level.


Assuntos
Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Tolerância ao Sal/fisiologia , Sais/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Ferro/metabolismo , Pressão Osmótica/fisiologia , Tolerância ao Sal/genética , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento
5.
Plant Cell Environ ; 29(6): 1122-37, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17080938

RESUMO

Genes encoding ion transporters that regulate ion homeostasis in soybean have not been carefully investigated. Using degenerate primers, we cloned a putative chloride channel gene (GmCLC1) and a putative Na+/H+ antiporter gene (GmNHX1) from soybean. Confocal microscopic studies using yellow fluorescent fusion proteins revealed that GmCLC1 and GmNHX1 were both localized on tonoplast. The expressions of GmCLC1 and GmNHX1 were both induced by NaCl or dehydration stress imposed by polyethylene glycol (PEG). Using mitochondrial integrity and cell death as the damage indicators, a clear alleviation under NaCl stress (but not PEG stress) was observed in both GmCLC1 and GmNHX1 transgenic cells. Using fluorescent dye staining and quenching, respectively, a higher concentration of chloride ion (Cl-) or sodium ion (Na+) was observed in isolated vacuoles in the cells of GmCLC1 and of GmNHX1 transgenic lines. Our result suggested that these vacuolar-located ion transporters function to sequester ions from cytoplasm into vacuole to reduce its toxic effects.


Assuntos
Canais de Cloreto/genética , Glycine max/genética , Membranas Intracelulares/metabolismo , Proteínas de Plantas/genética , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Canais de Cloreto/química , Canais de Cloreto/fisiologia , Clonagem Molecular , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Polietilenoglicóis/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , Alinhamento de Sequência , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/ultraestrutura , Tensoativos/farmacologia , Nicotiana/genética , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
6.
Gene ; 318: 103-11, 2003 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-14585503

RESUMO

Purple acid phosphatases (PAPs) are commonly found in plants, but the physiological functions of different classes of PAPs are not thoroughly understood. In the present study, we identified a novel gene, GmPAP3, from salt-stressed soybean using suppression subtractive hybridization (SSH) techniques. Protein sequence alignment studies and phylogenetic analysis strongly suggested that GmPAP3 belongs to the group of plant PAPs and PAP-like proteins that are distinct from those of fungi and animals. In addition, the invariable consensus metal binding residues of PAPs were all conserved in GmPAP3. Surprisingly, analysis of protein sorting signals showed that a putative mitochondrion targeting transit peptide is present on GmPAP3. Northern blot analysis revealed that NaCl stress causes a general induction of GmPAP3 expression in both roots and leaves of various cultivated (Glycine max) and wild (Glycine soja) soybean varieties. Further test using two genetically unrelated cultivated soybean varieties showed that the expression pattern of GmPAP3 is distinct from other PAP genes in soybeans. NaCl stress and oxidative stress but not phosphorus (P) starvation induces the expression of GmPAP3. These results suggest that the physiological role of GmPAP3 might be related to the adaptation of soybean to NaCl stress, possibly through its involvement in reactive oxygen species (ROS) forming and/or scavenging or stress-responding signal transduction pathways.


Assuntos
Fosfatase Ácida/genética , Glycine max/genética , Glicoproteínas/genética , Fósforo/deficiência , Cloreto de Sódio/farmacologia , Proteínas de Soja/genética , Sequência de Aminoácidos , Northern Blotting , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Estresse Oxidativo , Filogenia , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA