Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 97(5): 621-31, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-18943582

RESUMO

ABSTRACT A predictive model for production of apothecia by carpogenic germination of sclerotia is presented for Sclerotinia sclerotiorum. The model is based on the assumption that a conditioning phase must be completed before a subsequent germination phase can occur. Experiments involving transfer of sclerotia from one temperature regime to another allowed temperature-dependent rates to be derived for conditioning and germination for two S. sclerotiorum isolates. Although the response of each isolate to temperature was slightly different, sclerotia were fully conditioned after 2 to 6 days at 5 degrees C in soil but took up to 80 days at 15 degrees C. Subsequent germination took more than 200 days at 5 degrees C and 33 to 52 days at 20 degrees C. Upper temperature thresholds for conditioning and germination were 20 and 25 degrees C, respectively. A predictive model for production of apothecia derived from these data was successful in simulating the germination of multiple burials of sclerotia in the field when a soil water potential threshold of between -4.0 and -12.25 kilopascals (kPa) was imposed. The use of a germination model as part of a disease forecasting system for Sclerotinia disease in lettuce is discussed.

2.
Plant Dis ; 88(7): 695-702, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30812478

RESUMO

The effects of temperature and relative humidity on Peronospora destructor sporulation on onion (Allium cepa) leaves were studied under controlled environmental conditions. Sporangia were produced most rapidly at 8 to 12°C after 5 h of high humidity during dark periods. The greatest number of sporangia was produced at 100% relative humidity (RH), and sporulation decreased to almost nil when humidity decreased to 93% RH. A model, named MILIONCAST (an acronym for MILdew on onION foreCAST), was developed based on the data from these controlled environment studies to predict the rate of sporulation in relation to temperature and relative humidity. The accuracy of prediction of sporulation was evaluated by comparing predictions with observations of sporulation on infected plants in pots outdoors. The accuracy of MILIONCAST was compared with the accuracy of existing models based on DOWNCAST. MILIONCAST gave more correct predictions of sporulation than the DOWNCAST models and a random model. All models based on DOWNCAST were more accurate than the random model when compared on the basis of all predictions (including positive and negative predictions), but they gave fewer correct predictions of sporulation than the random model. De Visser's DOWNCAST and ONIMIL improved their accuracy of prediction of sporulation events when the threshold humidity for sporulation was reduced to 92% RH. The temporal pattern of predicted sporulation by MILIONCAST generally corresponded well to the pattern of sporulation observed on the outdoor potted plants at Wellesbourne, UK.

3.
Phytopathology ; 94(3): 268-79, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18943975

RESUMO

ABSTRACT The feasibility of developing a forecasting system for carpogenic germination of Sclerotinia sclerotiorum sclerotia was investigated in the laboratory by determining key relationships among temperature, soil water potential, and carpogenic germination for sclerotia of two S. sclerotiorum isolates. Germination of multiple burials of sclerotia to produce apothecia also was assessed in the field with concurrent recording of environmental data to examine patterns of germination under different fluctuating conditions. Carpogenic germination of sclerotia occurred between 5 and 25 degrees C but only for soil water potentials of >/=-100 kPa for both S. sclerotiorum isolates. Little or no germination occurred at 26 or 29 degrees C. At optimum temperatures of 15 to 20 degrees C, sclerotia buried in soil and placed in illuminated growth cabinets produced stipes after 20 to 27 days and apothecia after 27 to 34 days. Temperature, therefore, had a significant effect on both the rate of germination of sclerotia and the final number germinated. Rate of germination was correlated positively with temperature and final number of sclerotia germinated was related to temperature according to a probit model. Thermal time analysis of field data with constraints for temperature and water potential showed that the mean degree days to 10% germination of sclerotia in 2000 and 2001 was 285 and 279, respecttively, and generally was a good predictor of the observed appearance of apothecia. Neither thermal time nor relationships established in the laboratory could account for a decline in final percentage of germination for sclerotia buried from mid-May compared with earlier burials. Exposure to high temperatures may explain this effect. This, and other factors, require investigation before relationships derived in the laboratory or thermal time can be incorporated into a forecasting system for carpogenic germination.

4.
Mycol Res ; 107(Pt 2): 213-22, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12747333

RESUMO

The release and survival of ascospores of a UK Sclerotinia sclerotiorum isolate were studied. Apothecia placed in a spore clock apparatus with different lighting regimes at 15 degrees C released ascospores continuously with an increasing rate for the duration of experiments (72-84 h). Spore release was not confined to light or dark periods in alternating regimes and occurred in continuous dark or light. Ascospores were released in both saturated air (90-95% rh) and at 65-75% rh. High temperature and rh were detrimental to ascospore survival but spore viability was maintained for longer periods than previously reported. The significance of these results in relation to disease control is discussed.


Assuntos
Ascomicetos/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Umidade , Lactuca/microbiologia , Luz , Micologia/métodos , Doenças das Plantas/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA