Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Ann Indian Acad Neurol ; 27(3): 244-249, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819415

RESUMO

BACKGROUND: Large core acute ischemic strokes have predominantly been excluded from endovascular therapy (EVT) studies due to perceived higher risks of hemorrhage and poorer functional outcomes. However, recent randomized controlled trials (RCTs) indicate that EVT for large vessel occlusion (LVO) strokes improves functional outcomes compared to medical management alone, despite higher hemorrhagic transformation rates, with no corresponding increase in symptomatic intracerebral hemorrhage (sICH) rates. The real-world outcomes of this intervention in Indian patients remain underexplored. OBJECTIVES: To evaluate the real-world outcomes of EVT for large core acute ischemic strokes with LVO in an Indian population. METHODS: We conducted a single-center, retrospective observational study using a 7 years prospective database of EVT in anterior circulation stroke patients. Patients with Alberta Stroke Program Early Computed Tomography Score (ASPECTS) of 3-5 were included. Clinical and radiologic data were analyzed, with the primary endpoint being 90-day modified Rankin scale (mRS) scores. Safety outcomes included rates of sICH and mortality. Descriptive statistical analysis was done using Microsoft Excel. RESULTS: The study included 25 patients who met the inclusion criteria. Mean age of patients was 52.9 ± 14.3 years, and there were 13 (52%) males. Median ASPECTS was 5 (interquartile range 4-5). Successful recanalization, classified by modified Thrombolysis in Cerebral Infarction score, was 92%. Good functional recovery, that is, 90-day mRS 0-3, was achieved in nine (36%) patients. Safety outcomes: sICH was seen in four (16%) and mortality was reported in nine (36%) patients. CONCLUSIONS: Our results reaffirm findings from RCTs, provide updated real-world evidence, and suggest that EVT is a viable option to be considered in selected patients with large core ischemic infarcts.

2.
Ann Indian Acad Neurol ; 27(2): 140-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751919

RESUMO

Background: Cerebral venous sinus thrombosis (CVST) is a rare, treatable cause of stroke. Even though CVST has an established medical treatment, 15% of patients remain refractory to treatment. These patients may be candidates for endovascular treatment (EVT), yet the selection of patients remains a challenge. The study aims to understand the profile and outcome of patients treated with EVT and the type of procedure associated with good outcomes. Methods: This is a single-center, retrospective analysis of CVST patients who underwent EVT from 2009 till 2022. Patients who received only medical management were excluded. Modified Rankin Scale (mRS) ≤2 at 3 months was taken as the primary outcome. Secondary outcomes assessed were hospital stay, death, recurrence, mRS ≤ 2 at discharge, and angiographic recanalization. Results: Fifty-two patients were included. Twenty-eight (53.8%) were males; the mean age was 33.3 ± 12.3 years. Headache (n = 44, 84.6%) predominated among the symptoms. The common risk factors were anemia (n = 13, 25.5%) and hyperhomocysteinemia (n = 13, 25.5%). Worsening of sensorium (n = 21, 40.3%) and non-improvement of symptoms (n = 15, 28.8%) were the common indications for the procedure. Twenty-five (48.1%) people underwent in situ thrombolysis (IST). Death occurred in eight (15.3%) patients. Thirty-six (73.5%; 36/49) patients had a good outcome at 3 months. IST had a significantly better outcome (mRS ≤ 2, n = 20, 80%) compared to other procedures (P = 0.04). Hospital stay was lesser in the IST subgroup, but without statistical significance. Midline shift >5 mm (odds ratio [OR] 6.8 [1.5-30.9], P = 0.01) and Glasgow Coma Scale <9 before the procedure (OR 27.2 [3.1-236.4], P = 0.002) predicted bad outcomes at 3 months. Female gender (OR 4.5 [1.07-8.8], P = 0.03), presence of altered sensorium (OR 10.2 [1.2-87.5], P = 0.01), encephalopathic syndrome (P = 0.02), presence of parenchymal bleed (OR 3.7 [0.9-4.5], P = 0.04), and midline shift (OR 4.8 [1.1-20.2], P = 0.03) were associated with poor outcome at discharge. Conclusion: EVT yielded good outcomes in carefully selected, medically refractory patients of CVST. IST performed well compared to other procedures.

3.
Genome Res ; 34(1): 145-159, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38290977

RESUMO

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Filogenia , Genótipo , Camundongos Endogâmicos , Fenótipo , Mutação , Variação Genética
4.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260300

RESUMO

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

5.
Genes Brain Behav ; : e12875, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164795

RESUMO

Substance use disorders are heritable disorders characterized by compulsive drug use, the biological mechanisms for which remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference and sensation seeking, are predictive of drug-use phenotypes, thereby implicating shared genetic mechanisms. High-throughput behavioral screening in knockout (KO) mice allows efficient discovery of the function of genes. We used this strategy in two rounds of candidate prioritization in which we identified 33 drug-use candidate genes based upon predisposing drug-naïve phenotypes and ultimately validated the perturbation of 22 genes as causal drivers of substance intake. We selected 19/221 KO strains (8.5%) that had a difference from control on at least one drug-naïve predictive behavioral phenotype and determined that 15/19 (~80%) affected the consumption or preference for alcohol, methamphetamine or both. No mutant exhibited a difference in nicotine consumption or preference which was possibly confounded with saccharin. In the second round of prioritization, we employed a multivariate approach to identify outliers and performed validation using methamphetamine two-bottle choice and ethanol drinking-in-the-dark protocols. We identified 15/401 KO strains (3.7%, which included one gene from the first cohort) that differed most from controls for the predisposing phenotypes. 8 of 15 gene deletions (53%) affected intake or preference for alcohol, methamphetamine or both. Using multivariate and bioinformatic analyses, we observed multiple relations between predisposing behaviors and drug intake, revealing many distinct biobehavioral processes underlying these relationships. The set of mouse models identified in this study can be used to characterize these addiction-related processes further.

6.
Int J Radiat Oncol Biol Phys ; 118(5): 1308-1314, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104868

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive and lethal form of lung cancer and the overall 5-year survival (OS) for patients is a dismal 7%. Radiation therapy (RT) provides some benefit for selected patients with SCLC but could be improved with radiosensitizing agents. In this study, we identified novel radiosensitizers for SCLC by a CRISPR-Cas9 screen and evaluated the efficacy of ATM inhibitor AZD1390 as a radiosensitizer of SCLC. METHODS AND MATERIALS: We transduced the SCLC cell line SBC5 with a custom CRISPR sgRNA library focused on druggable gene targets and treated cells with RT. Cells collected at multiple timepoints were subjected to next-generation sequencing. We determined radiosensitization both in vitro with cell lines assessed by short-term viability and clonogenic assays, and in vivo mouse models by tumor growth delay. Pharmacodynamic effects of AZD1390 were quantified by ATM-Ser1981 phosphorylation, and RT-induced DNA damage by comet assay. RESULTS: Using a CRISPR dropout screen, we identified multiple radiosensitizing genes for SCLC at various timepoints with ATM as a top determinant gene for radiosensitivity. Validation by ATM knockout (KO) demonstrated increased radiosensitivity by short-term viability assay (dose modification factor [DMF]50 = 3.25-3.73 in SBC5 ATM-KO) and clonogenic assays (DMF37 1.25-1.65 in SBC5 ATM-KO). ATM inhibition by AZD1390 effectively abrogated ATM Ser1981 phosphorylation in SCLC cell lines and increased RT-induced DNA damage. AZD1390 synergistically increased the radiosensitivity of SCLC cell lines (cell viability assay: SBC5 DMF37 = 2.19, SHP77 DMF37 = 1.56, H446 DMF37 = 3.27, KP1 DMF37 = 1.65 at 100nM; clonogenic assay: SBC5 DMF37 = 4.23, H1048 DMF37 = 1.91), and in vivo murine syngeneic, KP1, and patient-derived xenograft (PDX) models, JHU-LX108 and JHU-LX33. CONCLUSIONS: In this study, we demonstrated that genetically and pharmacologically (AZD1390) inhibiting ATM markedly enhanced RT against SCLC, providing a novel pharmacologically tractable radiosensitizing strategy for patients with SCLC.


Assuntos
Neoplasias Pulmonares , Piridinas , Quinolonas , Radiossensibilizantes , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , RNA Guia de Sistemas CRISPR-Cas , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
7.
Mamm Genome ; 34(4): 509-519, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581698

RESUMO

The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users' persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan.


Assuntos
Fenômica , Camundongos , Animais , Camundongos Endogâmicos , Fenótipo
8.
Sci Data ; 10(1): 522, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543624

RESUMO

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.


Assuntos
Camundongos de Cruzamento Colaborativo , Locos de Características Quantitativas , Animais , Feminino , Masculino , Camundongos , Mapeamento Cromossômico/métodos , Camundongos de Cruzamento Colaborativo/genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Genômica
9.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609331

RESUMO

Hundreds of inbred laboratory mouse strains and intercross populations have been used to functionalize genetic variants that contribute to disease. Thousands of disease relevant traits have been characterized in mice and made publicly available. New strains and populations including the Collaborative Cross, expanded BXD and inbred wild-derived strains add to set of complex disease mouse models, genetic mapping resources and sensitized backgrounds against which to evaluate engineered mutations. The genome sequences of many inbred strains, along with dense genotypes from others could allow integrated analysis of trait - variant associations across populations, but these analyses are not feasible due to the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense data resource by harmonizing multiple variant datasets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extensible to other model organism species. The result is a web- and programmatically-accessible data service called GenomeMUSter ( https://muster.jax.org ), comprising allelic data covering 657 strains at 106.8M segregating sites. Interoperation with phenotype databases, analytic tools and other resources enable a wealth of applications including multi-trait, multi-population meta-analysis. We demonstrate this in a cross-species comparison of the meta-analysis of Type 2 Diabetes and of substance use disorders, resulting in the more specific characterization of the role of human variant effects in light of mouse phenotype data. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.

10.
PLoS One ; 18(7): e0288263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437067

RESUMO

Epidermolysis Bullosa (EB) is a group of rare genetic disorders that compromise the structural integrity of the skin such that blisters and subsequent erosions occur after minor trauma. While primary genetic risk of all subforms of EB adhere to Mendelian patterns of inheritance, their clinical presentations and severities can vary greatly, implying genetic modifiers. The Lamc2jeb mouse model of non-Herlitz junctional EB (JEB-nH) demonstrated that genetic modifiers can contribute substantially to the phenotypic variability of JEB and likely other forms of EB. The innocuous changes in an 'EB related gene', Col17a1, have shown it to be a dominant modifier of Lamc2jeb. This work identifies six additional Quantitative Trait Loci (QTL) that modify disease in Lamc2jeb/jeb mice. Three QTL include other known 'EB related genes', with the strongest modifier effect mapping to a region including the epidermal hemi-desmosomal structural gene dystonin (Dst-e/Bpag1-e). Three other QTL map to intervals devoid of known EB-associated genes. Of these, one contains the nuclear receptor coactivator Ppargc1a as its primary candidate and the others contain related genes Pparg and Igf1, suggesting modifier pathways. These results, demonstrating the potent disease modifying effects of normally innocuous genetic variants, greatly expand the landscape of genetic modifiers of EB and therapeutic approaches that may be applied.


Assuntos
Epidermólise Bolhosa Juncional , Animais , Camundongos , Pele , Vesícula , Epiderme , Locos de Características Quantitativas/genética
11.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503148

RESUMO

Substance use disorders (SUDs) are heritable disorders characterized by compulsive drug use, but the biological mechanisms driving addiction remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference, and sensation seeking, are predictive of drug-use phenotypes, implicating shared genetic mechanisms. Because of this relationship, high-throughput behavioral screening of predictive phenotypes in knockout (KO) mice allows efficient discovery of genes likely to be involved in drug use. We used this strategy in two rounds of screening in which we identified 33 drug-use candidate genes and ultimately validated the perturbation of 22 of these genes as causal drivers of substance intake. In our initial round of screening, we employed the two-bottle-choice paradigms to assess alcohol, methamphetamine, and nicotine intake. We identified 19 KO strains that were extreme responders on at least one predictive phenotype. Thirteen of the 19 gene deletions (68%) significantly affected alcohol use three methamphetamine use, and two both. In the second round of screening, we employed a multivariate approach to identify outliers and performed validation using methamphetamine two-bottle choice and ethanol drinking-in-the-dark protocols. We identified 15 KO strains that were extreme responders across the predisposing drug-naïve phenotypes. Eight of the 15 gene deletions (53%) significantly affected intake or preference for three alcohol, eight methamphetamine or three both (3). We observed multiple relations between predisposing behaviors and drug intake, revealing many distinct biobehavioral processes underlying these relationships. The set of mouse models identified in this study can be used to characterize these addiction-related processes further.

12.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339930

RESUMO

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

13.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214980

RESUMO

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.

14.
Genome Res ; 33(6): 857-871, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217254

RESUMO

The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.


Assuntos
Metilação de DNA , Histonas , Humanos , Camundongos , Animais , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Cromatina/genética , Epigênese Genética , Código das Histonas , Camundongos Endogâmicos , Expressão Gênica
15.
Commun Biol ; 6(1): 244, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879097

RESUMO

Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.


Assuntos
Bordetella pertussis , Histamina , Animais , Camundongos , Bordetella pertussis/genética , Toxina Pertussis , Transdução de Sinais , Proteínas do Sistema Complemento , Loci Gênicos , Glicoproteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular , Ribonucleoproteínas
16.
Neuropharmacology ; 226: 109409, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592885

RESUMO

The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Cocaína , Camundongos , Masculino , Feminino , Animais , Camundongos de Cruzamento Colaborativo/genética , Ácido Glutâmico , RNA Ribossômico 16S/genética , Administração Intravenosa
17.
Nucleic Acids Res ; 51(D1): D1067-D1074, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36330959

RESUMO

The Mouse Phenome Database (MPD; https://phenome.jax.org; RRID:SCR_003212), supported by the US National Institutes of Health, is a Biomedical Data Repository listed in the Trans-NIH Biomedical Informatics Coordinating Committee registry. As an increasingly FAIR-compliant and TRUST-worthy data repository, MPD accepts phenotype and genotype data from mouse experiments and curates, organizes, integrates, archives, and distributes those data using community standards. Data are accompanied by rich metadata, including widely used ontologies and detailed protocols. Data are from all over the world and represent genetic, behavioral, morphological, and physiological disease-related characteristics in mice at baseline or those exposed to drugs or other treatments. MPD houses data from over 6000 strains and populations, representing many reproducible strain types and heterogenous populations such as the Diversity Outbred where each mouse is unique but can be genotyped throughout the genome. A suite of analysis tools is available to aggregate, visualize, and analyze these data within and across studies and populations in an increasingly traceable and reproducible manner. We have refined existing resources and developed new tools to continue to provide users with access to consistent, high-quality data that has translational relevance in a modernized infrastructure that enables interaction with a suite of bioinformatics analytic and data services.


Assuntos
Bases de Dados Genéticas , Fenômica , Camundongos , Animais , Camundongos Endogâmicos , Fenótipo , Genótipo
18.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334589

RESUMO

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Assuntos
Tecido Adiposo Marrom , Proteoma , Humanos , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Proteoma/metabolismo , Termogênese/fisiologia , Adiposidade , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo
19.
iScience ; 25(12): 105487, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36425756

RESUMO

Small-cell lung cancer (SCLC) methylome is understudied. Here, we comprehensively profile SCLC using cell-free methylated DNA immunoprecipitation followed by sequencing (cfMeDIP-seq). Cell-free DNA (cfDNA) from plasma of 74 patients with SCLC pre-treatment and from 20 non-cancer participants, genomic DNA (gDNA) from peripheral blood leukocytes from the same 74 patients, and 7 accompanying circulating tumor cell-derived xenografts (CDXs) underwent cfMeDIP-seq. Peripheral blood leukocyte methylation (PRIME) subtraction to improve tumor specificity. SCLC cfDNA methylation is distinct from non-cancer but correlates with CDX tumor methylation. PRIME and k-means consensus identified two methylome clusters with prognostic associations that related to axon guidance, neuroactive ligand-receptor interaction, pluripotency of stem cells, and differentially methylated at long noncoding RNA and other repeats features. We comprehensively profiled the SCLC methylome in a large patient cohort and identified methylome clusters with prognostic associations. Our work demonstrates the potential of liquid biopsies in examining SCLC biology encoded in the methylome.

20.
Front Behav Neurosci ; 16: 886524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275853

RESUMO

Cocaine use and overdose deaths attributed to cocaine have increased significantly in the United States in the last 10 years. Despite the prevalence of cocaine use disorder (CUD) and the personal and societal problems it presents, there are currently no approved pharmaceutical treatments. The absence of treatment options is due, in part, to our lack of knowledge about the etiology of CUDs. There is ample evidence that genetics plays a role in increasing CUD risk but thus far, very few risk genes have been identified in human studies. Genetic studies in mice have been extremely useful for identifying genetic loci and genes, but have been limited to very few genetic backgrounds, leaving substantial phenotypic, and genetic diversity unexplored. Herein we report the measurement of cocaine-induced behavioral sensitization using a 19-day protocol that captures baseline locomotor activity, initial locomotor response to an acute exposure to cocaine and locomotor sensitization across 5 exposures to the drug. These behaviors were measured in 51 genetically diverse Collaborative Cross (CC) strains along with their inbred founder strains. The CC was generated by crossing eight genetically diverse inbred strains such that each inbred CC strain has genetic contributions from each of the founder strains. Inbred CC mice are infinitely reproducible and provide a stable, yet diverse genetic platform on which to study the genetic architecture and genetic correlations among phenotypes. We have identified significant differences in cocaine locomotor sensitivity and behavioral sensitization across the panel of CC strains and their founders. We have established relationships among cocaine sensitization behaviors and identified extreme responding strains that can be used in future studies aimed at understanding the genetic, biological, and pharmacological mechanisms that drive addiction-related behaviors. Finally, we have determined that these behaviors exhibit relatively robust heritability making them amenable to future genetic mapping studies to identify addiction risk genes and genetic pathways that can be studied as potential targets for the development of novel therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA