Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740337

RESUMO

Bioplastics are considered sustainable alternatives to conventional microplastics which are recognized as a threat to terrestrial ecosystems. However, little is known about the potential ecotoxicological effects of bioplastics on soil fauna and ecosystems. The present study assessed the toxicity of microplastics [Polystyrene (PS), Polyethylene (PE)] and bioplastics [Polyvinyl alcohol (PVA), Sodium polyacrylate (NaPa) on a key soil fauna Oppia nitens, a soil oribatid mite, and investigated the ecological relevance of O. nitens avoidance response as a valuable tool for the risk assessment of contaminated soils such as the Superfund sites. Findings showed that the mites' net response indicated avoidance behavior such that in most cases as concentrations of micro- and bioplastics increased, so did the avoidance responses. The avoidance EC50 endpoints showed PS < PE < PVA < NaPa, indicating higher deleterious effects of microplastics. High toxicity of PS in soils to O. nitens at EC50 of 165 (±25) mg/kg compared to bioplastics and other known contaminants poses an enormous threat to soil. For bioplastics in this study, there were no significant avoidances at concentrations up to 16,200 mg/kg compared to PS and PE which showed avoidance responses at 300 and 9000 mg/kg respectively, implying that bioplastics might be relatively safer to soil mites compared to conventional microplastics. Also, results indicated that long-term heavy metal pollution such as in contaminated Superfund sites decreased microbial biomass; a useful bioindicator of soil pollution. Furthermore, O. nitens avoidance of heavy metals contaminated sites demonstrated the ecological relevance of avoidance response test when assessing the habitat integrity of contaminated soil. The present study further supports the inclusion of the oribatid mite, O. nitens in the ecological risk assessment of contaminants in soil.


Assuntos
Microplásticos , Ácaros , Poluentes do Solo , Animais , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Ácaros/efeitos dos fármacos , Ecotoxicologia , Solo/química , Monitoramento Ambiental/métodos , Polietileno/toxicidade , Ecossistema , Medição de Risco , Plásticos/toxicidade , Aprendizagem da Esquiva/efeitos dos fármacos
2.
Science ; 375(6586): 1275-1281, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298255

RESUMO

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Trifolium/fisiologia , Urbanização , Cidades , Genes de Plantas , Genoma de Planta , Cianeto de Hidrogênio/metabolismo , População Rural , Trifolium/genética
3.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215041

RESUMO

Tungsten oxide (WO3), MXene, and an WO3/MXene nanocomposite were synthesized to study their photocatalytic and biological applications. Tungsten oxide was synthesized by an easy and cost-effective hydrothermal method, and its composite with MXene was prepared through the sonication method. The synthesized tungsten oxide, MXene, and its composite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), energy-dispersive X-ray analysis (EDX), and Brunauer-Emmett-Teller (BET) for their structural, morphological, spectral, elemental and surface area analysis, respectively. The crystallite size of WO3 calculated from XRD was ~10 nm, the particle size of WO3 was 130 nm, and the average thickness of MXene layers was 175 nm, which was calculated from FESEM. The photocatalytic activity of as-synthesized samples was carried out for the degradation of methylene blue under solar radiation, MXene, the WO3/MXene composite, and WO3 exhibited 54%, 89%, and 99% photocatalytic degradation, respectively. WO3 showed maximal degradation ability; by adding WO3 to MXene, the degradation ability of MXene was enhanced. Studies on antibacterial activity demonstrated that these samples are good antibacterial agents against positive strains, and their antibacterial activity against negative strains depends upon their concentration. Against positive strains, the WO3/MXene composite's inhibition zone was at 7 mm, while it became 9 mm upon increasing the concentration. This study proves that WO3, MXene, and the WO3/MXene nanocomposite could be used in biological and environmental applications.

4.
Angew Chem Int Ed Engl ; 61(18): e202202087, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35212442

RESUMO

Electrocatalytic NO reduction is regarded as an attractive strategy to degrade the NO contaminant into useful NH3 , but the lack of efficient and stable electrocatalysts to facilitate such multiple proton-coupled electron-transfer processes impedes its applications. Here, we report on developing amorphous B2.6 C supported on a TiO2 nanoarray on a Ti plate (a-B2.6 C@TiO2 /Ti) as an NH3 -producing nanocatalyst with appreciable activity and durability toward the NO electroreduction. It shows a yield of 3678.6 µg h-1 cm-2 and a FE of 87.6 %, superior to TiO2 /Ti (563.5 µg h-1 cm-2 , 42.6 %) and a-B2.6 C/Ti (2499.2 µg h-1 cm-2 , 85.6 %). An a-B2.6 C@TiO2 /Ti-based Zn-NO battery achieves a power density of 1.7 mW cm-2 with an NH3 yield of 1125 µg h-1 cm-2 . An in-depth understanding of catalytic mechanisms is gained by theoretical calculations.

5.
Small ; 18(13): e2106961, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146914

RESUMO

NiCo2 O4 nanowire array on carbon cloth (NiCo2 O4 /CC) is proposed as a highly active electrocatalyst for ambient nitrate (NO3 - ) reduction to ammonia (NH3 ). In 0.1 m NaOH solution with 0.1 m NaNO3 , such NiCo2 O4 /CC achieves a high Faradic efficiency of 99.0% and a large NH3 yield up to 973.2 µmol h-1  cm-2 . The superior catalytic activity of NiCo2 O4 comes from its half-metal feature and optimized adsorption energy due to the existence of Ni in the crystal structure. A Zn-NO3 - battery with NiCo2 O4 /CC cathode also shows a record-high battery performance.

6.
Microbiol Spectr ; 9(3): e0197221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908462

RESUMO

Both spatial and temporal variability are key attributes of sedimentary microbial communities, and while spatial effects on beta-diversity appear to dominate at larger distances, the character of spatial variability at finer scales remains poorly understood, especially for headwater stream communities. We investigated patterns of microbial community structure (MCS) in biofilms attached to streambed sediments from two watersheds across spatial scales spanning <1 m within a single stream to several hundred kilometers between watersheds. Analyses of phospholipid fatty acid (PLFA) profiles indicated that the variations in MCS were driven by increases in the relative abundance of microeukaryotic photoautotrophs and their contribution to total microbial biomass. Furthermore, streams within watersheds had similar MCS, underscoring watershed-level controls of microbial communities. Moreover, bacterial community structure assayed as either PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints or PLFA profiles edited to remove microeukaryotes indicated a distinct watershed-level biogeography. No distinct stream order-level distributions were identified, although DGGE analyses clearly indicated that there was greater variability in community structure among 1st-order streams than among 2nd- and 3rd-order streams. Longitudinal gradients in microbial biomass and structure showed that the greatest variations were associated with 1st-order streams within a watershed, and 68% of the variation in total microbial biomass was explained by sediment atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and percent water content. This study confirms a distinct microbial biogeography for headwater stream communities driven by environmental heterogeneity across distant watersheds and suggests that eukaryotic photoautotrophs play a key role in structuring bacterial communities on streambed sediments. IMPORTANCE Microorganisms in streams drive many biogeochemical reactions of global significance, including nutrient cycling and energy flow; yet, the mechanisms responsible for the distribution and composition of streambed microbial communities are not well known. We sampled sediments from multiple streams in two watersheds (Neversink River [New York] and White Clay Creek [WCC; Pennsylvania] watersheds) and measured microbial biomass and total microbial and bacterial community structures using phospholipid and molecular methods. Microbial and bacterial community structures displayed a distinct watershed-level biogeography. The smallest headwater streams within a watershed showed the greatest variation in microbial biomass, and 68% of that variation was explained by the atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and percent water content. Our study revealed a nonrandom distribution of microbial communities in streambeds, and showed that microeukaryotic photoautotrophs, environmental heterogeneity, and geographical distance influence microbial composition and spatial distribution.


Assuntos
Bactérias/isolamento & purificação , Eucariotos/isolamento & purificação , Microbiota , Rios/microbiologia , Rios/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Rios/química
7.
ACS Omega ; 5(41): 26845-26854, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33111010

RESUMO

Recently, a new class of two-dimensional (2D) materials, called MXene, consisting of layers of transition-metal carbides and nitrides/carbonitrides has been introduced. MXene, a multifunctional material with hydrophilic nature and excellent electrical conductivity and chemical stabilities, can be applied in diverse research areas such as energy harvesting and its storage, water purification, thermal dissipation, and gas sensing. To achieve the best quality of MXene, optimization of some important synthetic parameters is highly required such as an optimized etchant concentration to remove an "A" element from the MAX phase and sonication time for the efficient exfoliation of MXene flakes. Besides, there is a need to disclose that particular solvent through which intercalation can easily be achieved. In this work, we optimized the abovementioned critical parameters for the synthesis of good-quality MXene. Our results clearly explain the variations in the quality of MXene under applied etchant concentrations, solvents for better intercalation, and optimization of sonication time for better exfoliation. The obtained results suggest that 30% HF as an etchant, dimethyl sulfoxide (DMSO) as a solvent, and 135 min as the sonication time are effective parameters for the synthesis of good-quality MXene. We expect that this report will be helpful for the young research community to synthesize good-quality MXene with the required properties.

8.
Lipids ; 49(9): 933-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25119485

RESUMO

Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies.


Assuntos
Ácidos Graxos/análise , Fungos/química , Fosfolipídeos/análise , Quitridiomicetos/química , Quitridiomicetos/metabolismo , Análise por Conglomerados , Ácidos Graxos/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Água Doce/microbiologia , Fungos/metabolismo , Álcool Nicotinílico/análise , Fosfolipídeos/química , Filogenia , Microbiologia do Solo
9.
Oecologia ; 161(2): 343-51, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19504124

RESUMO

Spatial scale is a critical consideration for understanding ecological patterns and controls of ecological processes, yet very little is known about how rates of fundamental ecosystem processes vary across spatial scales. We assessed litter decomposition in stream networks whose inherent hierarchical nature makes them a suitable model system to evaluate variation in decay rates across multiple spatial scales. Our hypotheses were (1) that increasing spatial extent adds significant variability at each hierarchical level, and (2) that stream size is an important source of variability among streams. To test these hypotheses we let litter decompose in four riffles in each of twelve 3rd-order streams evenly distributed across four 4th-order watersheds, and in a second experiment determined variation in decomposition rate along a stream-size gradient ranging from orders 1 to 4. Differences in decay rates between coarse-mesh and fine-mesh litter bags accounted for much of the overall variability in the data sets, and were remarkably consistent across spatial scales and stream sizes. In particular, variation across watersheds was minor. Differences among streams and among riffles were statistically significant, though relatively small, leaving most of the total variance (51%) statistically unexplained. This result suggests that variability was generated mainly within riffles, decreasing successively with increasing scale. A broad range of physical and chemical attributes measured at the study sites explained little of the variance in decomposition rate. This, together with the strong mesh-size effect and greater variability among coarse-mesh bags, suggests that detritivores account, at least partly, for the unexplained variance. These findings contrast with the widespread perception that variability of ecosystem characteristics, including process rates, invariably increases (1) with spatial extent and (2), in stream networks, when analyses encompass headwaters of various size. An important practical implication is that natural variability need not compromise litter decomposition assays as a means of assessing functional ecosystem integrity.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Rios , Análise de Variância , Geografia , Alemanha , Folhas de Planta/microbiologia
10.
Inhal Toxicol ; 12 Suppl 4: 15-39, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-12881885

RESUMO

Although some consensus has emerged among the scientific and regulatory communities that the urban ambient atmospheric mix of combustion related pollutants is a determinant of population health, the relative toxicity of the chemical and physical components of this complex mixture remains unclear. Daily mortality rates and concurrent data on size-fractionated particulate mass and gaseous pollutants were obtained in eight of Canada's largest cities from 1986 to 1996 inclusive in order to examine the relative toxicity of the components of the mixture of ambient air pollutants to which Canadians are exposed. Positive and statistically significant associations were observed between daily variations in both gas- and particulate-phase pollution and daily fluctuations in mortality rates. The association between air pollution and mortality could not be explained by temporal variation in either mortality rates or weather factors. Fine particulate mass (less than 2.5 microns in average aerometric diameter) was a stronger predictor of mortality than coarse mass (between 2.5 and 10 microns). Size-fractionated particulate mass explained 28% of the total health effect of the mixture, with the remaining effects accounted for by the gases. Forty-seven elemental concentrations were obtained for the fine and coarse fraction using nondestructive x-ray fluorescence techniques. Sulfate concentrations were obtained by ion chromatography. Sulfate ion, iron, nickel, and zinc from the fine fraction were most strongly associated with mortality. The total effect of these four components was greater than that for fine mass alone, suggesting that the characteristics of the complex chemical mixture in the fine fraction may be a better predictor of mortality than mass alone. However, the variation in the effects of the constituents of the fine fraction between cities was greater than the variation in the mass effect, implying that there are additional toxic components of fine particulate matter not examined in this study whose concentrations and effects vary between locations. One of these components, carbon, represents half the mass of fine particulate matter. We recommend that measurements of elemental and organic carbon be undertaken in Canadian urban environments to examine their potential effects on human health.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Mortalidade/tendências , População Urbana/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Canadá/epidemiologia , Cidades , Humanos , Modelos Logísticos , Tempo (Meteorologia)
11.
J Air Waste Manag Assoc ; 48(8): 689-700, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9739623

RESUMO

The role of ambient levels of carbon monoxide (CO) in the exacerbation of heart problems in individuals with both cardiac and other diseases was examined by comparing daily variations in CO levels and daily fluctuations in nonaccidental mortality in metropolitan Toronto for the 15-year period 1980-1994. After adjusting the mortality time series for day-of-the-week effects, nonparametic smoothed functions of day of study and weather variables, statistically significant positive associations were observed between daily fluctuations in mortality and ambient levels of carbon monoxide, nitrogen dioxide, sulfur dioxide, coefficient of haze, total suspended particulate matter, sulfates, and estimated PM2.5 and PM10. However, the effects of this complex mixture of air pollutants could be almost completely explained by the levels of CO and total suspended particulates (TSP). Of the 40 daily nonaccidental deaths in metropolitan Toronto, 4.7% (95% confidence interval of 3.4%-6.1%) could be attributable to CO while TSP contributed an additional 1.0% (95% confidence interval of 0.2-1.9%), based on changes in CO and TSP equivalent to their average concentrations. Statistically significant positive associations were observed between CO and mortality in all seasons, age, and disease groupings examined. Carbon monoxide should be considered as a potential public health risk to urban populations at current ambient exposure levels.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monóxido de Carbono/análise , Mortalidade , Idoso , Idoso de 80 Anos ou mais , Cardiopatias/mortalidade , Humanos , Ontário/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA