Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Aging ; 140: 93-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761538

RESUMO

Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1ß, NFκB, and fibrinogen α/ß/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.


Assuntos
Doença de Alzheimer , Expressão Gênica , RNA Mensageiro , Receptores de Trombina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Masculino , Feminino , Idoso de 80 Anos ou mais , RNA Mensageiro/metabolismo , Expressão Gênica/genética , Idoso , Disfunção Cognitiva/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo , Cognição , Inflamação/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Mediadores da Inflamação/metabolismo
2.
J Psychopharmacol ; 38(2): 188-199, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293836

RESUMO

BACKGROUND: The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS: To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS: Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS: Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.


Assuntos
Analgésicos Opioides , Núcleo Dorsal da Rafe , Humanos , Ratos , Camundongos , Animais , Serotonina/fisiologia , Depressão/tratamento farmacológico , Ratos Sprague-Dawley , Ácido gama-Aminobutírico , Neurônios Serotoninérgicos , Morfina/farmacologia , Ansiedade
3.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175145

RESUMO

Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.

4.
J Phys Condens Matter ; 35(36)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37216948

RESUMO

Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2'-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV-Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit.

5.
Nanoscale ; 15(5): 2044-2053, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597843

RESUMO

Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e., [CoIII(SQ)(Cat)(4-CN-py)2] ↔ [CoII(SQ)2(4-CN-py)2] and [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the CoII high-spin state.

6.
Chem Commun (Camb) ; 58(5): 661-664, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34914817

RESUMO

The [Co(SQ)2(4-CN-py)2] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ)2(4-CN-py)2].

7.
Fed Pract ; 38(12): e77-e79, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35177892

RESUMO

Diagnosis of pulmonary nodules requires an in-depth workup, including clinical evaluation, laboratory and pulmonary functions tests, and imaging, which helped to identify in this patient pulmonary rheumatoid arthritis, an important factor in patient mortality.

8.
Psychopharmacology (Berl) ; 238(1): 29-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231727

RESUMO

RATIONALE: The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous data show that stressors can inhibit 5-HT neuronal activity and release by stimulating the release of the stress neurohormone corticotropin-releasing factor (CRF) within the serotonergic dorsal raphe nucleus (DRN). The inhibitory effects of CRF on 5-HT DRN neurons are indirect, mediated by CRF-R1 receptors located on GABAergic afferents. OBJECTIVES: We tested the hypothesis that DRN CRF-R1 receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). We also examined the role of this circuitry in stress-induced negative affective state with 22-kHz distress ultrasonic vocalizations (USVs), which are naturally emitted by rats in response to environmental challenges such as pain, stress, and drug withdrawal. METHODS: First, we tested if activation of CRF-R1 receptors in the DRN with the CRF-R1-preferring agonist ovine CRF (oCRF) would reinstate morphine CPP and then if blockade of CRF-R1 receptors in the DRN with the CRF-R1 antagonist NBI 35965 would attenuate swim stress-induced reinstatement of morphine CPP. Second, we tested if intra-DRN pretreatment with NBI 35965 would attenuate foot shock stress-induced 22-kHz USVs. RESULTS: Intra-DRN injection of oCRF reinstated morphine CPP, while intra-DRN injection of NBI 35965 attenuated swim stress-induced reinstatement. Moreover, intra-DRN pretreatment with NBI 35965 significantly reduced 22-kHz distress calls induced by foot shock. CONCLUSIONS: These data provide evidence that stress-induced negative affective state is mediated by DRN CRF-R1 receptors and may contribute to reinstatement of morphine CPP.


Assuntos
Analgésicos Opioides/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Morfina/farmacologia , Motivação/efeitos dos fármacos , Serotonina/metabolismo , Estresse Psicológico/psicologia , Analgésicos Opioides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Hormônio Liberador da Corticotropina/administração & dosagem , Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/análogos & derivados , Núcleo Dorsal da Rafe/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Morfina/administração & dosagem , Dependência de Morfina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Reforço Psicológico , Ovinos , Estresse Psicológico/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA