Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Acta Neuropathol Commun ; 10(1): 61, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468848

RESUMO

A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.


Assuntos
Agrina , Doença dos Neurônios Motores , Agrina/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais
2.
Lancet Neurol ; 21(2): 163-175, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35065039

RESUMO

Muscle weakness and fatigue are the hallmarks of autoimmune neuromuscular junction disorders. Although a plethora of immunosuppressive treatments exist, no cure is available to date and many patients are left with debilitating muscle weakness. Recent advances in the understanding of the structure and function of the neuromuscular junction, and the development of novel in vitro and in vivo models, have been instrumental in unravelling the pathophysiology of these autoimmune diseases. These advances are providing the rationale for the development of new therapeutic strategies. Restoration of the immune imbalance in these diseases, in parallel with symptomatic therapeutic approaches at the neuromuscular junction, will be crucial to obtain long-term remission or even cure.


Assuntos
Doenças da Junção Neuromuscular , Humanos , Junção Neuromuscular
3.
Exp Physiol ; 106(8): 1794-1805, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114278

RESUMO

NEW FINDINGS: What is the central question of this study? The (dystrophin-deficient) muscles of mdx mice generate less contractile force per cross-sectional area (specific force) than those of healthy wild-type mice: what is the influence of muscle specific kinase (MuSK) upon the properties of the tibialis anterior (TA) muscle in mdx mice? What is the main finding and its importance? Injection of adeno-associated viral vector encoding MuSK into the TA muscle of young mdx mice increased the specific force of the muscle, suggesting the MuSK signalling system has the potential to restore healthy growth to dystrophin-deficient muscles. ABSTRACT: In the mdx mouse model of Duchenne muscular dystrophy, muscle fibres are fragile and prone to injury and degeneration. Compared to wild-type mice, muscles of mdx mice also develop less specific force (contractile force/cross-sectional area). We recently reported that injecting adeno-associated viral vector encoding muscle specific kinase (AAV-MuSK) into muscles of mdx mice increased utrophin expression and made the muscles more resistant to acute stretch-induced injury. Here we injected AAV-MuSK unilaterally into the tibialis anterior muscle of mdx mice at a younger age (4 weeks), and recorded contraction force from the muscles in situ at 12 weeks of age. Compared to contralateral empty-vector control muscles, muscles injected with AAV-MuSK produced 28% greater specific force (P = 0.0005). They did not undergo the compensatory hypertrophy that normally occurs in muscles of mdx mice. Injection of AAV encoding rapsyn (a downstream effector of MuSK signalling) caused no such improvement in muscle strength. Muscles injected with AAV-MuSK displayed a 10% reduction in the number of fibres with centralized nuclei (P = 0.0015). Our results in mdx mice suggest that elevating the expression of MuSK can reduce the incidence of muscle fibre regeneration and improve the strength of dystrophin-deficient muscles.


Assuntos
Distrofia Muscular de Duchenne , Animais , Distrofina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Força Muscular , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/metabolismo
4.
Neurosci Lett ; 725: 134900, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32156612

RESUMO

Endocannabinoids play important roles in regulating CNS synaptic function and peripheral metabolism, but cannabinoids can also act acutely to modulate contraction strength in skeletal muscle. Nerve terminals and the skeletal muscle sarcolemma express components of the cannabinoid signaling system. Endocannabinoids, N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoyl-glycerol (2-AG), are produced by skeletal muscle. They may be involved in the acute regulation of neuromuscular transmission, by adjusting the parameters for quantal acetylcholine release from the motor nerve terminal. Downstream of neuromuscular transmission, cannabinoids may also act to limit the efficiency of excitation-contraction coupling. Improved understanding of the distinct signaling actions of particular cannabinoid compounds and their receptor/transduction systems will help advance our understanding of the role of endocannabinoids in skeletal muscle physiology. Cannabinoids might also offer the potential to develop new pharmacotherapeutics to treat neuromuscular disorders that affect muscle strength.


Assuntos
Canabinoides/metabolismo , Neurônios Motores/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Animais , Canabinoides/farmacologia , Humanos , Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
5.
Int J Mol Med ; 43(3): 1128-1138, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30628669

RESUMO

Side population (SP) cells are a small subpopulation of cells found in many mammalian tissues and organs, identified by their capacity to efflux Hoechst 33342 dye. They are enriched for stem/progenitor cell activity. SP cells isolated from the adult mouse lung can be separated into a CD45+ subset (bone marrow­derived) and a CD45­ subset that can be subdivided into CD31­ and CD31+ subpopulations. CD45­/CD31­ lung SP (LSP) cells are known to be mesenchymal stem cells. However, CD45­/CD31+ LSP cells are not fully characterized. In the present study, it was found that CD45­/CD31+ LSP cells were able to form colonies. Based on the expression of vascular endothelial growth factor receptor 2 (VEGFR2), these cells were separated into VEGFR2­ and VEGFR2+ cells. The CD45­/CD31+/VEGFR2­ LSP cells expressed genes characteristic of smooth muscle and endothelial progenitors, and were able to differentiate into smooth muscle and endothelial cells in vitro. The CD45­/CD31+/VEGFR2+ LSP cells expressed genes characteristic of endothelial progenitors and gave rise to endothelial cells, although not smooth muscle, in vitro. The data demonstrate that CD45­/CD31+/VEGFR2­ LSP cells differentiated into CD45­/CD31+/VEGFR2+ LSP cells and then endothelial cells, indicating that CD45­/CD31+/VEGFR2+ LSP cells are likely to be derived from CD45­/CD31+/VEGFR2­ LSP cells. Taken together, the results suggest that CD45­/CD31+ LSP cells can be separated into CD45­/CD31+/VEGFR2­ LSP cells, which may be progenitors of endothelial and smooth muscle, whereas CD45­/CD31+/VEGFR2+ LSP cells may serve as late commitment endothelial progenitors in the adult mouse lung.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pulmão/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Células da Side Population/citologia , Células da Side Population/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular Tumoral , Separação Celular/métodos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Imunofluorescência , Expressão Gênica , Imunofenotipagem , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
6.
Sci Rep ; 8(1): 4685, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549349

RESUMO

Cannabinoids exert dynamic control over many physiological processes including memory formation, cognition and pain perception. In the central nervous system endocannabinoids mediate negative feedback of quantal transmitter release following postsynaptic depolarization. The influence of cannabinoids in the peripheral nervous system is less clear and might have broad implications for the therapeutic application of cannabinoids. We report a novel cannabinoid effect upon the mouse neuromuscular synapse: acutely increasing synaptic vesicle volume and raising the quantal amplitudes. In a mouse model of myasthenia gravis the cannabinoid receptor agonist WIN 55,212 reversed fatiguing failure of neuromuscular transmission, suggesting future therapeutic potential. Our data suggest an endogenous pathway by which cannabinoids might help to regulate transmitter release at the neuromuscular junction.


Assuntos
Endocanabinoides/administração & dosagem , Miastenia Gravis/tratamento farmacológico , Junção Neuromuscular/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Morfolinas/farmacologia , Miastenia Gravis/etiologia , Miastenia Gravis/metabolismo , Naftalenos/farmacologia , Junção Neuromuscular/efeitos dos fármacos
7.
Ann N Y Acad Sci ; 1412(1): 54-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125188

RESUMO

While the majority of myasthenia gravis patients express antibodies targeting the acetylcholine receptor, the second most common cohort instead displays autoantibodies against muscle-specific kinase (MuSK). MuSK is a transmembrane tyrosine kinase found in the postsynaptic membrane of the neuromuscular junction. During development, MuSK serves as a signaling hub, coordinating the alignment of the pre- and postsynaptic components of the synapse. Adult mice that received repeated daily injections of IgG from anti-MuSK+ myasthenia gravis patients developed muscle weakness, associated with neuromuscular transmission failure. MuSK autoantibodies are predominantly of the IgG4 type. They suppress the kinase activity of MuSK and the phosphorylation of target proteins in the postsynaptic membrane. Loss of postsynaptic acetylcholine receptors is the primary cause of neuromuscular transmission failure. MuSK autoantibodies also disrupt the capacity of the motor nerve terminal to adaptively increase acetylcholine release in response to the reduced postsynaptic responsiveness to acetylcholine. The passive IgG transfer model of MuSK myasthenia gravis has been used to test candidate treatments. Pyridostigmine, a first-line cholinesterase inhibitor drug, exacerbated the disease process, while 3,4-diaminopyridine and albuterol were found to be beneficial in this mouse model.


Assuntos
Miastenia Gravis Autoimune Experimental/etiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/imunologia , Animais , Inibidores da Colinesterase/farmacologia , Feminino , Humanos , Imunização Passiva , Camundongos , Proteínas Musculares/metabolismo , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/fisiopatologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Sinapses/imunologia , Sinapses/fisiologia
8.
J Neuromuscul Dis ; 4(2): 159-164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582869

RESUMO

BACKGROUND: The L25 mouse line was generated by random genomic insertion of a lens-specific transgene. Inbreeding of L25 hemizygotes revealed an unanticipated spastic phenotype in the hind limbs. OBJECTIVE: The goals were to characterize the motor phenotype in the L25 mice and to map the transgene insert site within the mouse genome. METHODS: Six pairs of L25+/- mice were repeatedly mated. Beginning at weaning, all progeny were inspected for body weight and motor signs twice weekly until they displayed predefined ethical criteria for termination. The transgene insert site was determined by whole genome sequencing. Western blotting was used to compare the expression levels of beta-IV spectrin protein in the brain. RESULTS: Matings of hemizygous L25+/- × L25+/- mice yielded 20% (29/148) affected weanlings, identified by an abnormal retraction of the hind limbs when lifted by the tail, and a fine tremor. Affected mice were less mobile and grew more slowly than wild-type littermates. All affected mice required termination due to >15% loss of body weight (50% survival age 92 days). At the endpoint, mice showed varying degrees of spastic paresis or spastic paralysis localised to the hind limbs. Motor endplates remained fully innervated. Genome sequencing confirmed that the transgene was inserted in the locus of ßIV spectrin of L25 mice. Western blotting indicated that this random insertion had greatly reduced the expression of ßIV spectrin protein in the affected L25 mice. CONCLUSIONS: The results confirm the importance of ßIV spectrin for maintaining central motor pathway control of the hind limbs, and provide a developmental time course for the phenotype.


Assuntos
Espasticidade Muscular/metabolismo , Mutagênese Insercional , Espectrina/metabolismo , Animais , Peso Corporal/fisiologia , Encéfalo/metabolismo , Feminino , Expressão Gênica , Membro Posterior , Masculino , Camundongos Transgênicos , Placa Motora/metabolismo , Placa Motora/patologia , Espasticidade Muscular/patologia , Paresia/metabolismo , Paresia/patologia , Fenótipo , Espectrina/genética , Transgenes
9.
Int J Cardiol ; 227: 378-386, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27847151

RESUMO

BACKGROUND: Side-population (SP) cells, identified by their capacity to efflux Hoechst dye, are highly enriched for stem/progenitor cell activity. They are found in many mammalian tissues, including mouse heart. Studies suggest that cardiac SP (CSP) cells can be divided into SCA1+/CD31-, SCA1+/CD31+ and SCA1-/CD31- CSP subpopulations. SCA1+/CD31- were shown to be cardiac and endothelial stem/progenitors while SCA1+/CD31+ CSP cells are endothelial progenitors. SCA1-/CD31- CSP cells remain to be fully characterized. In this study, we characterized SCA1-/CD31- CSP cells in the adult mouse heart, and investigated their abilities to proliferate, differentiate and migrate in vitro and in vivo. METHODS AND RESULTS: Using fluorescence-activated cell sorting, reverse transcriptase/polymerase chain reaction, assays of cell proliferation, differentiation and migration, and a murine model of myocardial infarction we show that SCA1-/CD31- CSP cells are located in the heart mesenchyme and express genes characteristic of stem cells and endothelial progenitors. These cells were capable of proliferation, differentiation, migration and vascularization in vitro and in vivo. Following experimental myocardial infarction, the SCA1-/CD31- CSP cells migrated from non-infarcted areas to the infarcted region within the myocardium where they differentiated into endothelial cells forming vascular (tube-like) structures. We further demonstrated that the SDF-1α/CXCR4 pathway may play an important role in migration of these cells after myocardial infarction. CONCLUSIONS: Based on their gene expression profile, localization and ability to proliferate, differentiate, migrate and vascularize in vitro and in vivo, we conclude that SCA1-/CD31- CSP cells may serve as endothelial progenitor cells in the adult mouse heart.


Assuntos
Ataxina-1/fisiologia , Células Endoteliais/fisiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/fisiologia , Células da Side Population/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia
10.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27408701

RESUMO

Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.

12.
Physiol Rep ; 3(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26702075

RESUMO

We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle-specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti-MuSK-positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src-Y418 and AChR ß-subunit-Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno-associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK-EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK-EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV-MuSK-EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK-EGFP, forced expression of rapsyn-EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK-dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.

13.
Curr Pharm Des ; 21(18): 2468-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25777761

RESUMO

Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.


Assuntos
Modelos Animais de Doenças , Miastenia Gravis/imunologia , Animais , Autoanticorpos/imunologia , Humanos , Camundongos , Miastenia Gravis/patologia
14.
Exp Neurol ; 270: 41-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25620417

RESUMO

Study of the electrophysiological function of the neuromuscular junction (NMJ) is instrumental in the understanding of the symptoms and pathophysiology of myasthenia gravis (MG), an autoimmune disorder characterized by fluctuating and fatigable muscle weakness. Most patients have autoantibodies to the acetylcholine receptor at the NMJ. However, in recent years autoantibodies to other crucial postsynaptic membrane proteins have been found in previously 'seronegative' MG patients. Electromyographical recording of compound and single-fibre muscle action potentials provides a crucial in vivo method to determine neuromuscular transmission failure while ex vivo (miniature) endplate potential recordings can reveal the precise synaptic impairment. Here we will review these electrophysiological methods used to assess NMJ function and discuss their application and typical results found in the diagnostic and experimental study of patients and animal models of the several forms of MG.


Assuntos
Miastenia Gravis/fisiopatologia , Junção Neuromuscular/anatomia & histologia , Junção Neuromuscular/fisiologia , Animais , Modelos Animais de Doenças , Eletrofisiologia , Humanos , Transmissão Sináptica/fisiologia
15.
Curr Opin Neurol ; 27(5): 558-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25159928

RESUMO

PURPOSE OF REVIEW: Antibodies to muscle-specific tyrosine kinase (MuSK) characterize up to 5% of myasthenia gravis patients. This review focuses on the differences to clinical antiacetylcholine receptor-myasthenia gravis, and on the physiology and animal studies that elucidate the role of MuSK and help explain the clinical disease. RECENT FINDINGS: MuSK forms the core of a protein complex in the postsynaptic membrane at the neuromuscular junction. During development, MuSK tyrosine kinase signaling is vital for the formation and stabilization of the postsynaptic endplate; it is now clear that long-term homeostasis of mature neuromuscular junctions requires MuSK function. Patient MuSK-antibodies are largely of the IgG4 type and in cell culture block the assembly and activation of MuSK kinase. Active immunization and passive transfer mouse models show reduced postsynaptic acetylcholine receptors and disturbed synaptic alignment, diminished synaptic potentials and impaired muscle activation.MuSK myasthenia gravis patients display particular bulbar and respiratory muscle involvement, with a high rate of myasthenic crises. Plasma exchange and immunosuppression with corticosteroids and rituximab appear to be most effective in treating MuSK myasthenia gravis. In contrast, the cholinesterase inhibitors, such as pyridostigmine, appear less suitable for this form of myasthenia gravis. SUMMARY: MuSK myasthenia gravis has distinct clinical and pathophysiological features.


Assuntos
Autoanticorpos/sangue , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Junção Neuromuscular/fisiopatologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Miastenia Gravis/epidemiologia , Miastenia Gravis/imunologia , Troca Plasmática
16.
J Physiol ; 592(13): 2881-97, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860174

RESUMO

Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR ß-subunit-Y390 was reduced at endplates. In contrast, endplate staining for ß-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold.


Assuntos
Autoanticorpos/farmacologia , Imunoglobulina G/farmacologia , Placa Motora/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Placa Motora/efeitos dos fármacos , Placa Motora/fisiologia , Proteínas Musculares/metabolismo , Miastenia Gravis/imunologia , Transporte Proteico , Receptores Proteína Tirosina Quinases/imunologia , Quinases da Família src/metabolismo
17.
Nature ; 506(7487): 200-3, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522597

RESUMO

Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

18.
PLoS One ; 9(2): e87840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505322

RESUMO

The ß2-adrenergic receptor agonist, albuterol, has been reported beneficial in treating several forms of congenital myasthenia. Here, for the first time, we examined the potential benefit of albuterol in a mouse model of anti-Muscle Specific Kinase (MuSK) myasthenia gravis. Mice received 15 daily injections of IgG from anti-MuSK positive patients, which resulted in whole-body weakness. At neuromuscular junctions in the tibialis anterior and diaphragm muscles the autoantibodies caused loss of postsynaptic acetylcholine receptors, and reduced the amplitudes of the endplate potential and spontaneous miniature endplate potential in the diaphragm muscle. Treatment with albuterol (8 mg/kg/day) during the two-week anti-MuSK injection series reduced the degree of weakness and weight loss, compared to vehicle-treated mice. However, the compound muscle action potential recorded from the gastrocnemius muscle displayed a decremental response in anti-MuSK-injected mice whether treated with albuterol or vehicle. Ongoing albuterol treatment did not increase endplate potential amplitudes compared to vehicle-treated mice nor did it prevent the loss of acetylcholine receptors from motor endplates. On the other hand, albuterol treatment significantly reduced the degree of fragmentation of endplate acetylcholine receptor clusters and increased the extent to which the remaining receptor clusters were covered by synaptophysin-stained nerve terminals. The results provide the first evidence that short-term albuterol treatment can ameliorate weakness in a robust mouse model of anti-MuSK myasthenia gravis. The results also demonstrate that it is possible for albuterol treatment to reduce whole-body weakness without necessarily reversing myasthenic impairment to the structure and function of the neuromuscular junction.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/farmacologia , Autoanticorpos/toxicidade , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Animais , Autoanticorpos/imunologia , Feminino , Humanos , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miastenia Gravis Autoimune Experimental/induzido quimicamente , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/patologia , Junção Neuromuscular/imunologia , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/imunologia
19.
J Vis Exp ; (94)2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25590231

RESUMO

The neuromuscular junction (NMJ) is the large, cholinergic relay synapse through which mammalian motor neurons control voluntary muscle contraction. Structural changes at the NMJ can result in neurotransmission failure, resulting in weakness, atrophy and even death of the muscle fiber. Many studies have investigated how genetic modifications or disease can alter the structure of the mouse NMJ. Unfortunately, it can be difficult to directly compare findings from these studies because they often employed different parameters and analytical methods. Three protocols are described here. The first uses maximum intensity projection confocal images to measure the area of acetylcholine receptor (AChR)-rich postsynaptic membrane domains at the endplate and the area of synaptic vesicle staining in the overlying presynaptic nerve terminal. The second protocol compares the relative intensities of immunostaining for synaptic proteins in the postsynaptic membrane. The third protocol uses Fluorescence Resonance Energy Transfer (FRET) to detect changes in the packing of postsynaptic AChRs at the endplate. The protocols have been developed and refined over a series of studies. Factors that influence the quality and consistency of results are discussed and normative data are provided for NMJs in healthy young adult mice.


Assuntos
Microscopia Confocal/métodos , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Animais , Feminino , Transferência Ressonante de Energia de Fluorescência , Camundongos , Camundongos Endogâmicos C57BL , Placa Motora/metabolismo , Junção Neuromuscular/anatomia & histologia , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo
20.
PLoS One ; 8(7): e67970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844140

RESUMO

Loss of connections between motor neurons and skeletal muscle fibers contribute to motor impairment in old age, but the sequence of age-associated changes that precede loss of the neuromuscular synapse remains uncertain. Here we determine changes in the size of neuromuscular synapses within the tibialis anterior muscle across the life span of C57BL/6J mice. Immunofluorescence, confocal microscopy and morphometry were used to measure the area occupied by nerve terminal synaptophysin staining and postsynaptic acetylcholine receptors at motor endplates of 2, 14, 19, 22, 25 and 28 month old mice. The key findings were: 1) At middle age (14-months) endplate acetylcholine receptors occupied 238 ± 11 µm(2) and nerve terminal synaptophysin 168 ± 14 µm(2) (mean ± SEM). 2) Between 14-months and 19-months (onset of old age) the area occupied by postsynaptic acetylcholine receptors declined 30%. At many endplates the large acetylcholine receptor plaque became fragmented into multiple smaller acetylcholine receptor clusters. 3) Between 19- and 25-months, the fraction of endplate acetylcholine receptors covered by synaptophysin fell 21%. By 28-months, half of the endplates imaged retained ≤ 50 µm(2) area of synaptophysin staining. 4) Within aged muscles, the degree to which an endplate remained covered by synaptophysin did not depend upon the total area of acetylcholine receptors, nor upon the number of discrete receptor clusters. 5) Voluntary wheel-running exercise, beginning late in middle-age, prevented much of the age-associated loss of nerve terminal synaptophysin. In summary, a decline in the area of endplate acetylcholine receptor clusters at the onset of old age was followed by loss of nerve terminal synaptophysin from the endplate. Voluntary running exercise, begun late in middle age, substantially inhibited the loss of nerve terminal from aging motor endplates.


Assuntos
Envelhecimento/fisiologia , Junção Neuromuscular/fisiologia , Condicionamento Físico Animal , Fatores Etários , Animais , Feminino , Camundongos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Terminações Nervosas , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Receptores Colinérgicos/metabolismo , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA