Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2626: 69-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715900

RESUMO

The ability to conduct spatially controlled RNA interference (RNAi) for gene knockdown using the UAS/Gal4 system is among the most appealing techniques available for analysis of gene function in the Drosophila ovary. While gene knockdown experiments in somatic cells in the developing organism (i.e., embryos and larvae) are effectively and commonly performed, the use of RNAi in adult ovarian cells can be hampered by the unintended deleterious effects of Gal4 expression in "off-target" developing tissues. Mosaic analysis overcomes these problems by imparting temporal and spatial control over gene manipulation, providing a useful tool to compare manipulated cells with wild-type cells in the same tissue. Here, we provide a method to utilize the UAS/Gal4 system in combination with the Flippase (FLP)-Flippase Recognition Target (FRT) system to generate positively labeled "FLP-Out" clones expressing a chosen RNAi in both the germline and the soma in the Drosophila ovary. This protocol outlines each step of the generation of clones and the selection of appropriate fly stocks and reagents, providing a guide to this powerful tool in the Drosophila genetic toolbox. These techniques allow for RNAi analysis within a specific cell type, providing an opportunity to study a variety of unique aspects of cell function that would not be possible in more traditional RNAi-based experiments.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , Interferência de RNA , Ovário/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas Genéticas , Drosophila melanogaster/genética
2.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33693603

RESUMO

Gamete production in mammals and insects is controlled by cell signaling pathways that facilitate communication between germ cells and somatic cells. Nuclear receptor signaling is a key mediator of many aspects of reproduction, including gametogenesis. For example, the NR5A subfamily of nuclear receptors is essential for gonad development and sex steroid production in mammals. Despite the original identification of the NR5A subfamily in the model insect Drosophila melanogaster, it has been unclear whether Drosophila NR5A receptors directly control oocyte production. Ftz-f1 is expressed throughout the ovary, including in germline stem cells, germline cysts, and several populations of somatic cells. We show that ftz-f1 is required in follicle cells prior to stage 10 to promote egg chamber survival at the mid-oogenesis checkpoint. Our data suggest that egg chamber death in the absence of ftz-f1 is due, at least in part, to failure of follicle cells to exit the mitotic cell cycle or failure to accumulate oocyte-specific factors in the germline. Taken together, these results show that, as in mammals, the NR5A subfamily promotes maximal reproductive output in Drosophila. Our data underscore the importance of nuclear receptors in the control of reproduction and highlight the utility of Drosophila oogenesis as a key model for unraveling the complexity of nuclear receptor signaling in gametogenesis.


Assuntos
Proteínas de Drosophila , Drosophila , Receptores Nucleares Órfãos , Animais , Drosophila melanogaster , Feminino , Oogênese , Ovário
3.
Vitam Horm ; 116: 327-362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752824

RESUMO

Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Oogênese , Receptores de Esteroides , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Germinativas/fisiologia , Oogênese/genética , Oogênese/fisiologia , Receptores de Esteroides/genética , Receptores de Esteroides/fisiologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA