Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Anat ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760592

RESUMO

The RUNT-related transcription factor RUNX2 plays a critical role in osteoblast differentiation, and alterations to gene dosage cause distinct craniofacial anomalies. Uniquely amongst the RUNT-related family, vertebrate RUNX2 encodes a polyglutamine/polyalanine repeat (Gln23-Glu-Ala17 in humans), with the length of the polyalanine component completely conserved in great apes. Surprisingly, a frequent 6-amino acid deletion polymorphism, p.(Ala84_Ala89)del, occurs in humans (termed 11A allele), and a previous association study (Cuellar et al. Bone 137:115395;2020) reported that the 11A variant was significantly more frequent in non-syndromic sagittal craniosynostosis (nsSag; allele frequency [AF] = 0.156; 95% confidence interval [CI] 0.126-0.189) compared to non-syndromic metopic craniosynostosis (nsMet; AF = 0.068; 95% CI 0.045-0.098). However, the gnomAD v.2.1.1 control population used by Cuellar et al. did not display Hardy-Weinberg equilibrium, hampering interpretation. To re-examine this association, we genotyped the RUNX2 11A polymorphism in 225 individuals with sporadic nsSag as parent-child trios and 164 singletons with sporadic nsMet, restricting our analysis to individuals of European ancestry. We compared observed allele frequencies to the non-transmitted alleles in the parent-child trios, and to the genome sequencing data from gnomAD v.4, which display Hardy-Weinberg equilibrium. Observed AFs (and 95% CI) were 0.076 (0.053-0.104) in nsSag and 0.082 (0.055-0.118) in nsMet, compared with 0.062 (0.042-0.089) in non-transmitted parental alleles and 0.065 (0.063-0.067) in gnomAD v.4.0.0 non-Finnish European control genomes. In summary, we observed a non-significant excess, compared to gnomAD data, of 11A alleles in both nsSag (relative risk 1.18, 95% CI 0.83-1.67) and nsMet (relative risk 1.29, 95% CI 0.87-1.92), but we did not replicate the much higher excess of RUNX2 11A alleles in nsSag previously reported (p = 0.0001).

2.
Genet Med ; 25(9): 100883, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154149

RESUMO

PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.


Assuntos
Craniossinostoses , Proteínas de Homeodomínio , Animais , Humanos , Camundongos , Sequência de Bases , Suturas Cranianas/patologia , Craniossinostoses/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Penetrância
4.
Genet Med ; 22(9): 1498-1506, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499606

RESUMO

PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.


Assuntos
Craniossinostoses , Craniossinostoses/genética , Genótipo , Humanos , Mutação de Sentido Incorreto/genética , Penetrância , Fenótipo , Proteína Smad6/genética
5.
Hum Genet ; 139(8): 1077-1090, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266521

RESUMO

Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.


Assuntos
Proteína Morfogenética Óssea 7/genética , Craniossinostoses/genética , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Metilação de DNA , Genes Reporter , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Íntrons/genética , Desequilíbrio de Ligação , Regiões Promotoras Genéticas/genética , Fatores de Risco
6.
J Med Genet ; 54(4): 260-268, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27884935

RESUMO

BACKGROUND: Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. METHODS: We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. RESULTS: We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). CONCLUSIONS: This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.


Assuntos
Craniossinostoses/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Neoplasias/genética , Craniossinostoses/diagnóstico , Craniossinostoses/patologia , Exoma/genética , Testes Genéticos , Humanos , Mutação , Valor Preditivo dos Testes
7.
Nat Genet ; 45(3): 304-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354436

RESUMO

Craniosynostosis, the premature fusion of the cranial sutures, is a heterogeneous disorder with a prevalence of ∼1 in 2,200 (refs. 1,2). A specific genetic etiology can be identified in ∼21% of cases, including mutations of TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, and causes Saethre-Chotzen syndrome, typically associated with coronal synostosis. Using exome sequencing, we identified 38 heterozygous TCF12 mutations in 347 samples from unrelated individuals with craniosynostosis. The mutations predominantly occurred in individuals with coronal synostosis and accounted for 32% and 10% of subjects with bilateral and unilateral pathology, respectively. TCF12 encodes one of three class I E proteins that heterodimerize with class II bHLH proteins such as TWIST1. We show that TCF12 and TWIST1 act synergistically in a transactivation assay and that mice doubly heterozygous for loss-of-function mutations in Tcf12 and Twist1 have severe coronal synostosis. Hence, the dosage of TCF12-TWIST1 heterodimers is critical for normal coronal suture development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Acrocefalossindactilia/complicações , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/patologia , Craniossinostoses/complicações , Craniossinostoses/genética , Craniossinostoses/patologia , Dimerização , Exoma , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA