RESUMO
BACKGROUND: Physicians sometimes consider whether or not to perform diagnostic testing in healthy people, but it is unknown whether nonextreme values of diagnostic tests typically encountered in such populations have any predictive ability, in particular for risk of death. The goal of this study was to quantify the associations among population reference intervals of 152 common biomarkers with all-cause mortality in a representative, nondiseased sample of adults in the United States. METHODS: The study used an observational cohort derived from the National Health and Nutrition Examination Survey (NHANES), a representative sample of the United States population consisting of 6 survey waves from 1999 to 2010 with linked mortality data (unweighted N = 30 651) and a median followup of 6.1 years. We deployed an X-wide association study (XWAS) approach to systematically perform association testing of 152 diagnostic tests with all-cause mortality. RESULTS: After controlling for multiple hypotheses, we found that the values within reference intervals (10-90th percentiles) of 20 common biomarkers used as diagnostic tests or clinical measures were associated with all-cause mortality, including serum albumin, red cell distribution width, serum alkaline phosphatase, and others after adjusting for age (linear and quadratic terms), sex, race, income, chronic illness, and prior-year healthcare utilization. All biomarkers combined, however, explained only an additional 0.8% of the variance of mortality risk. We found modest year-to-year changes, or changes in association from survey wave to survey wave from 1999 to 2010 in the association sizes of biomarkers. CONCLUSIONS: Reference and nonoutlying variation in common biomarkers are consistently associated with mortality risk in the US population, but their additive contribution in explaining mortality risk is minor.
Assuntos
Biomarcadores/análise , Causas de Morte , Inquéritos Nutricionais , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Estados Unidos/epidemiologiaRESUMO
INTRODUCTION: Previous research on sugar-sweetened beverage trends has focused on self-reported consumption from surveys. Few studies used objective store sales or explored differences by area-level demographics and store type. METHODS: The average volume of beverages sold per store per 3-digit zoning improvement plan code from 2006 to 2015 was calculated using national Nielsen Retail Scanner point-of-sale data from 24,240 stores. A multilevel regression model analyzed annual trends, with random intercepts for state and separate models for beverage type (regular soda, no/low-calorie soda, other sugary drinks, 100% fruit juice, bottled water). Differences by store type (convenience, supermarkets, drug stores, mass merchandisers) and area-level demographics (categorized as tertiles) were examined. Data were analyzed in 2019. RESULTS: The model-based estimates indicated that sales of regular soda (-11.8%), no/low-calorie soda (-19.8%), and 100% fruit juice (-31.9%) decreased over time, whereas sales of bottled water (+34.4%) increased and sales of other sugary drinks remained stable (+2.4%). Decreases in sugar-sweetened beverage sales were largely concentrated in supermarkets and larger in areas with high income and education levels and a high percentage of black and Hispanic people. There were also relatively larger increases in bottled water sales in states located in the South and Midwest. CONCLUSIONS: The finding that sales of sugar-sweetened beverages decreased over time, whereas sales of bottled water increased is encouraging because sugar-sweetened beverage consumption is linked to obesity and other chronic conditions. This study provides a novel, rigorous assessment of U.S. beverage sales trends and differences by community and store characteristics.
Assuntos
Bebidas Adoçadas com Açúcar , Açúcares , Bebidas , Bebidas Gaseificadas , Comércio , Humanos , ÁguaRESUMO
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
RESUMO
The shortage of human organs for transplantation is a devastating medical problem. One way to expand organ supply is to derive functional organs from patient-specific stem cells. Due to their capacity to grow indefinitely in the laboratory and differentiate into any cell type of the human body, patient-specific pluripotent stem (PS) cells harbor the potential to provide an inexhaustible supply of donor cells for transplantation. However, current efforts to generate functional organs from PS cells have so far been unsuccessful. An alternative and promising strategy is to generate human organs inside large animal species through a technique called interspecies blastocyst complementation. In this method, animals comprised of cells from human and animal species are generated by injecting donor human PS cells into animal host embryos. Critical genes for organ development are knocked out by genome editing, allowing donor human PS cells to populate the vacated niche. In principle, this experimental approach will produce a desired organ of human origin inside a host animal. In this mini-review, we focus on recent advances that may bring the promise of blastocyst complementation to clinical practice. While CRISPR/Cas9 has accelerated the creation of transgenic large animals such as pigs and sheep, we propose that further advances in the generation of chimera-competent human PS cells are needed to achieve interspecies blastocyst complementation. It will also be necessary to define the constituents of the species barrier, which inhibits efficient colonization of host animal embryos with human cells. Interspecies blastocyst complementation is a promising approach to help overcome the organ shortage facing the practice of clinical medicine today.
Assuntos
Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Transplante de ÓrgãosRESUMO
Brazilians are highly admixed with ancestry from Europe, Africa, America, and Asia and yet still underrepresented in genomic databanks. We hereby present a collection of exomic variants from 609 elderly Brazilians in a census-based cohort (SABE609) with comprehensive phenotyping. Variants were deposited in ABraOM (Online Archive of Brazilian Mutations), a Web-based public database. Population representative phenotype and genotype repositories are essential for variant interpretation through allele frequency filtering; since elderly individuals are less likely to harbor pathogenic mutations for early- and adult-onset diseases, such variant databases are of great interest. Among the over 2.3 million variants from the present cohort, 1,282,008 were high-confidence calls. Importantly, 207,621 variants were absent from major public databases. We found 9,791 potential loss-of-function variants with about 300 mutations per individual. Pathogenic variants on clinically relevant genes (ACMG) were observed in 1.15% of the individuals and were correlated with clinical phenotype. We conducted incidence estimation for prevalent recessive disorders based upon heterozygous frequency and concluded that it relies on appropriate pathogenicity assertion. These observations illustrate the relevance of collecting demographic data from diverse, poorly characterized populations. Census-based datasets of aged individuals with comprehensive phenotyping are an invaluable resource toward the improved understanding of variant pathogenicity.
Assuntos
Exoma , Genética Populacional , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Alelos , Brasil , Estudos de Coortes , Biologia Computacional , Bases de Dados Genéticas , Etnicidade , Feminino , Frequência do Gene , Variação Genética , Genótipo , Heterozigoto , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mutação , FenótipoRESUMO
The National Health and Nutrition Examination Survey (NHANES) is a population survey implemented by the Centers for Disease Control and Prevention (CDC) to monitor the health of the United States whose data is publicly available in hundreds of files. This Data Descriptor describes a single unified and universally accessible data file, merging across 255 separate files and stitching data across 4 surveys, encompassing 41,474 individuals and 1,191 variables. The variables consist of phenotype and environmental exposure information on each individual, specifically (1) demographic information, physical exam results (e.g., height, body mass index), laboratory results (e.g., cholesterol, glucose, and environmental exposures), and (4) questionnaire items. Second, the data descriptor describes a dictionary to enable analysts find variables by category and human-readable description. The datasets are available on DataDryad and a hands-on analytics tutorial is available on GitHub. Through a new big data platform, BD2K Patient Centered Information Commons (http://pic-sure.org), we provide a new way to browse the dataset via a web browser (https://nhanes.hms.harvard.edu) and provide application programming interface for programmatic access.
Assuntos
Bases de Dados Factuais , Inquéritos Nutricionais , Centers for Disease Control and Prevention, U.S. , Exposição Ambiental , Humanos , Estados UnidosRESUMO
Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules.
Assuntos
Processamento Alternativo , Transcriptoma , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Regulação da Expressão Gênica , Camundongos Transgênicos , Neuroglia/fisiologia , Neurônios/fisiologia , Análise de Sequência de RNARESUMO
MOTIVATION: Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL). RESULTS: We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key 'hub' diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes. CONTACTS: rong.chen@mssm.edu or joel.dudley@mssm.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Registros Eletrônicos de Saúde , Negro ou Afro-Americano , Bases de Dados Factuais , Hispânico ou Latino , Humanos , População BrancaRESUMO
In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI/SNF, facilitated divergent transcription by promoting rapid nucleosome turnover. We propose that these chromatin-mediated effects control divergent transcription initiation, complementing downstream pathways linked to early termination and degradation of the noncoding RNAs.
Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Fúngico/genética , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Terminação da Transcrição Genética , Transcrição GênicaRESUMO
The diagnosed incidence of small intestine neuroendocrine tumors (SI-NETs) is increasing, and the underlying genomic mechanisms have not yet been defined. Using exome- and genome-sequence analysis of SI-NETs, we identified recurrent somatic mutations and deletions in CDKN1B, the cyclin-dependent kinase inhibitor gene, which encodes p27. We observed frameshift mutations of CDKN1B in 14 of 180 SI-NETs, and we detected hemizygous deletions encompassing CDKN1B in 7 out of 50 SI-NETs, nominating p27 as a tumor suppressor and implicating cell cycle dysregulation in the etiology of SI-NETs.
Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Neoplasias Intestinais/genética , Mutação , Tumores Neuroendócrinos/genética , Ciclo Celular/genética , Estudos de Coortes , Genes Supressores de Tumor , Predisposição Genética para Doença , Humanos , Neoplasias Intestinais/epidemiologia , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Tumores Neuroendócrinos/epidemiologia , Tumores Neuroendócrinos/patologia , Análise de Sequência de DNARESUMO
With the completion of the zebrafish genome sequencing project, it becomes possible to analyze the function of zebrafish genes in a systematic way. The first step in such an analysis is to inactivate each protein-coding gene by targeted or random mutation. Here we describe a streamlined pipeline using proviral insertions coupled with high-throughput sequencing and mapping technologies to widely mutagenize genes in the zebrafish genome. We also report the first 6144 mutagenized and archived F1's predicted to carry up to 3776 mutations in annotated genes. Using in vitro fertilization, we have rescued and characterized ~0.5% of the predicted mutations, showing mutation efficacy and a variety of phenotypes relevant to both developmental processes and human genetic diseases. Mutagenized fish lines are being made freely available to the public through the Zebrafish International Resource Center. These fish lines establish an important milestone for zebrafish genetics research and should greatly facilitate systematic functional studies of the vertebrate genome.
Assuntos
Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Genômica , Peixe-Zebra/genética , Alelos , Animais , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Gammaretrovirus/fisiologia , Anotação de Sequência Molecular , Mutagênese Insercional , Mutação , Fenótipo , Integração ViralRESUMO
We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.
Assuntos
Adenocarcinoma/enzimologia , Neoplasias Pulmonares/enzimologia , Mutação/genética , Receptor ErbB-2/genética , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Alelos , Animais , Movimento Celular/fisiologia , Clonagem Molecular , Primers do DNA/genética , Dimerização , Immunoblotting , Neoplasias Pulmonares/genética , Camundongos , Células NIH 3T3 , Fosforilação , Estrutura Terciária de Proteína/genética , Retroviridae , Espectrometria de Massas em TandemRESUMO
Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.