Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18656, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134614

RESUMO

In this study, we investigated the humidity sensing properties of TiO2-based ceramics doped with tantalum pentoxide (Ta2O5) and indium tin oxide (ITO). Pure TiO2, 1%Ta-doped TiO2 (1%TTO), 1%ITO-doped TiO2 (1%ISTO), and 1%(Ta2O5 + ITO) co-doped TiO2 (1%ISTTO) ceramic samples were obtained by sintering at 1200 °C for 3 h. The rutile phase was observed in all samples. The lattice parameters of the single and co-doped samples were larger than those of pure TiO2, confirming the substitution of dopants. Porosity was observed in all ceramics. The mean grain sizes of all doped samples were significantly reduced compared to undoped TiO2. A homogeneous element dispersion was observed in the 1%TTO and 1%ISTTO ceramics, while segregation particles of related In-rich elements was observed in the 1%ISTO ceramic. Giant dielectric properties were not achieved in any samples due to the porosity. Nevertheless, excluding the undoped TiO2, the dielectric properties of all porous ceramics varied significantly with changes in humidity. The 1%ISTTO ceramic demonstrated superior humidity sensing properties, including a low maximum hysteresis error of 3.6% at 102 Hz. In contrast, the 1% TTO and 1% ISTO ceramics showed higher maximum hysteresis errors of 7.2% and 19.8%, respectively. Notably, the response and recovery times were 7.05 ± 0.18 and 2.48 ± 0.39 min, respectively, with good repeatability. This improvement is likely due to the synergistic effect of oxygen vacancies and Ta Ti · defects on the surface, enhancing the humidity sensing properties of the 1% ISTTO ceramic, coupled with its optimal microstructure due to its lowest porosity and grain size.

2.
Sci Rep ; 14(1): 9726, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678064

RESUMO

This research explores the capacitive humidity sensing properties of CuO ceramic, selected for its simplicity as an oxide and ease of fabrication, in addition to its remarkable dielectric properties. The CuO sample was fabricated by sintering at 980 °C for 5 h. A microstructure with a relative density of 88.9% was obtained. X-ray diffraction confirmed the formation of a pure CuO phase. Broadband dielectric spectroscopy revealed that the observed giant dielectric properties at room temperature (RT) were attributed to extrinsic effects, including the internal barrier layer capacitor and sample-electrode contact effects. A key focus of this study was to examine the giant dielectric properties of CuO ceramic as a function of relative humidity (RH) at RT and frequencies of 102 and 103 Hz. It was observed that the capacitance of CuO continuously increased with rising RH levels, ranging from 30 to 95%. Notably, the maximum hysteresis errors were constrained to 2.3 and 3.3% at 102 and 103 Hz, respectively. Additionally, the CuO ceramic demonstrated very fast response and recovery times, approximately 2.8 and 0.95 min, respectively. The repeatability of the humidity response of the capacitance was also established. Overall, this research highlights the high potential of CuO as a giant dielectric material for application in humidity sensors.

3.
Heliyon ; 9(6): e17048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484357

RESUMO

CaCu3-xNixTi4O12/CaTiO3 ceramic composites were fabricated using initial Ca2Cu2-xNixTi4O12 compositions (x = 0, 0.05, 0.10, and 0.20) to improve the dielectric properties (DPs) of the CaCu3Ti4O12 ceramics. CaCu3Ti4O12 and CaTiO3 phases were confirmed. Microstructural analysis and Rietveld refinement showed that the Ni2+ dopant might substitute the Cu2+ sites of the CaCu3Ti4O12 structure. The average grain sizes of CaCu3Ti4O12 (4.1-5.6 µm) and CaTiO3 (1.2-1.4 µm) changed slightly with the Ni2+ doping concentration. The best DPs were obtained for the CaCu3-xNixTi4O12/CaTiO3 with x = 0.2. The loss tangent was significantly reduced by an order of magnitude compared to that of the undoped composite, from tanδ∼0.161 to ∼0.016 at 1 kHz, while the dielectric permittivity slightly decreased from ε'∼5.7 × 103 to ∼4.0 × 103. Furthermore, the temperature dependence of ε' could be improved by doping with Ni2+. The improved DPs were caused by the enhanced electrical responses of the internal interfaces, which resulted in enhanced non-Ohmic properties. The largest nonlinear coefficient (α∼7.6) was obtained for the CaCu3-xNixTi4O12/CaTiO3 with x = 0.05. Impedance spectroscopy showed that the CaCu3-xNixTi4O12/CaTiO3 composites consisted of semiconducting and insulating components. The DPs of CaCu3-xNixTi4O12/CaTiO3 were explained based on the space-charge polarization at the active-interfaces.

4.
Molecules ; 27(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014551

RESUMO

The effects of the sintering conditions on the phase compositions, microstructure, electrical properties, and dielectric responses of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics prepared by a solid-state reaction method were investigated. A pure phase of the Na1/2Y1/2Cu3Ti4.1O12 ceramic was achieved in all sintered ceramics. The mean grain size slightly increased with increasing sintering time (from 1 to 15 h after sintering at 1070 °C) and sintering temperature from 1070 to 1090 °C for 5 h. The primary elements were dispersed in the microstructure. Low dielectric loss tangents (tan δ~0.018-0.022) were obtained. Moreover, the dielectric constant increased from ε'~5396 to 25,565 upon changing the sintering conditions. The lowest tan δ of 0.009 at 1 kHz was obtained. The electrical responses of the semiconducting grain and insulating grain boundary were studied using impedance and admittance spectroscopies. The breakdown voltage and nonlinear coefficient decreased significantly as the sintering temperature and time increased. The presence of Cu+, Cu3+, and Ti3+ was examined using X-ray photoelectron spectroscopy, confirming the formation of semiconducting grains. The dielectric and electrical properties were described using Maxwell-Wagner relaxation, based on the internal barrier layer capacitor model.

5.
Polymers (Basel) ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054726

RESUMO

Cetyl trimethyl ammonium bromide (CTAB)-modified natural rubber latex/Portland cement paste (CTAB + NL/PC) composites were fabricated by varying the NL/cement and CTAB/cement ratios to improve the elastic property of PC. The stability and workability of the CTAB-modified NL particles in the PC matrix were significantly improved. The microstructure and dielectric property analyses of PC, CTAB/PC, NL/PC, and (CTAB + NL)/PC composites were performed to describe the interaction mechanism between the CTAB-modified NL and PC. The portlandite phase in PC was reduced by incorporating CTAB + NL. Although the tensile strength of NL/PC was significantly increased, its compressive strength also greatly decreased by ~40.3%. The tensile and compressive strengths of CTAB/PC were not significantly improved. Notably, the tensile strength of (CTAB + NL)/PC was significantly increased compared to those of PC, CTAB/PC, and NL/PC, while the depreciated compressive strength was only 18.7%. The optimized compressive-tensile performance of (CTAB + NL)/PC was equal to that of PC. The dielectric constants of NL/PC, CTAB/PC, and (CTAB + NL)/PC were reduced due to the low dielectric constant of NL and the ability of CTAB to capture negative charges in the PC matrix, leading to a reduction in the negative surface charges and hence the interfacial polarization. This result was confirmed by the decreased loss tangent in a low-frequency range, which is usually reduced by decreasing the free charges. This work provides a comprehensive guideline for significantly improving the elastic property of PC while retaining a high compressive strength.

6.
Polymers (Basel) ; 13(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883647

RESUMO

Poly(vinylidene fluoride) (PVDF) nanocomposites were fabricated by incorporating BaTiO3 nanoparticles (particle size of ~100 nm, nBT), which were deposited by Au nanoparticles (nAu) with an average particle size of 17.8 ± 4.0 nm using a modified Turkevich method. Systematic characterizations on the synthesized nAu-nBT hybrid nanoparticles and nAu-nBT/PVDF nanocomposites with different contents of a filler were performed. The formation of nAu-nBT hybrid nanoparticles was confirmed with the calculated nAu:nBT ratio of 0.5:99.5 wt.%. The homogeneous dispersion of nAu and nBT in the PVDF polymer was obtained due to the interaction between the negative surface charge of the nAu-nBT filler (compared to that of the nBT) and polar ß-PVDF phase, which was confirmed by the zeta potential measurement and Fourier-transform infrared spectroscopy, respectively. A significantly increased dielectric permittivity (ε' ~ 120 at 103 Hz) with a slight temperature-dependent of <±15% ranging from -20 to 140 °C was obtained. Notably, a low loss tangent (tanδ < 0.08) was obtained even at a high temperature of 140 °C. Therefore, incorporating a PVDF polymer with nAu-nBT hybrid nanoparticles is an attractive method to improve the dielectric properties of a PVDF polymer for dielectrics applications.

7.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201841

RESUMO

Flexible dielectric polymer composites have been of great interest as embedded capacitor materials in the electronic industry. However, a polymer composite has a low relative dielectric permittivity (ε' < 100), while its dielectric loss tangent is generally large (tanδ > 0.1). In this study, we fabricate a novel, high-permittivity polymer nanocomposite system with a low tanδ. The nanocomposite system comprises poly(vinylidene fluoride) (PVDF) co-filled with Au nanoparticles and semiconducting TiO2 nanorods (TNRs) that contain Ti3+ ions. To homogeneously disperse the conductive Au phase, the TNR surface was decorated with Au-NPs ~10-20 nm in size (Au-TNRs) using a modified Turkevich method. The polar ß-PVDF phase was enhanced by the incorporation of the Au nanoparticles, partially contributing to the enhanced ε' value. The introduction of the Au-TNRs in the PVDF matrix provided three-phase Au-TNR/PVDF nanocomposites with excellent dielectric properties (i.e., high ε' ≈ 157 and low tanδ ≈ 0.05 at 1.8 vol% of Au and 47.4 vol% of TNRs). The ε' of the three-phase Au-TNR/PVDF composite is ~2.4-times higher than that of the two-phase TNR/PVDF composite, clearly highlighting the primary contribution of the Au nanoparticles at similar filler loadings. The volume fraction dependence of ε' is in close agreement with the effective medium percolation theory model. The significant enhancement in ε' was primarily caused by interfacial polarization at the PVDF-conducting Au nanoparticle and PVDF-semiconducting TNR interfaces, as well as by the induced ß-PVDF phase. A low tanδ was achieved due to the inhibited conducting pathway formed by direct Au nanoparticle contact.

8.
Polymers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071685

RESUMO

The enhanced dielectric permittivity (ε') while retaining a low loss tangent (tanδ) in silver nanoparticle-(In1/2Nb1/2)0.1Ti0.9O2/poly(vinylidene fluoride) (Ag-INTO/PVDF) composites with different volume fractions of a filler (fAg-INTO) was investigated. The hybrid particles were fabricated by coating Ag nanoparticles onto the surface of INTO particles, as confirmed by X-ray diffraction. The ε' of the Ag-INTO/PVDF composites could be significantly enhanced to ~86 at 1 kHz with a low tanδ of ~0.044. The enhanced ε' value was approximately >8-fold higher than that of the pure PVDF polymer for the composite with fAg-INTO = 0.5. Furthermore, ε' was nearly independent of frequency in the range of 102-106 Hz. Therefore, filling Ag-INTO hybrid particles into a PVDF matrix is an effective way to increase ε' while retaining a low tanδ of polymer composites. The effective medium percolation theory model can be used to fit the experimental ε' values with various fAg-INTO values. The greatly increased ε' primarily originated from interfacial polarization at the conducting Ag nanoparticle-PVDF and Ag-INTO interfaces, and it was partially contributed by the high ε' of INTO particles. A low tanδ was obtained because the formation of the conducting network in the polymer was inhibited by preventing the direct contact of Ag nanoparticles.

9.
RSC Adv ; 10(66): 40442-40449, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520845

RESUMO

Three-phase gold nanoparticle-Na1/2Y1/2Cu3Ti4O12 (Au-NYCTO)/poly(vinylidene fluoride) (PVDF) composites with 0.095-0.487 hybrid particle volume fractions (f) were fabricated. Au nanoparticles with a diameter of ∼10 nm were decorated on the surfaces of high-permittivity NYCTO particles using a modified Turkevich's method. The polar ß-PVDF phase was confirmed to exist in the composites. Significantly enhanced dielectric permittivity of ∼98 (at 1 kHz) was obtained in the Au-NYCTO/PVDF composite with f Au-NYCTO = 0.487, while the loss tangent was suppressed to 0.09. Abrupt changes in the dielectric and electrical properties, which signified percolation behavior, were not observed even when f Au-NYCTO = 0.487. Using the effective medium percolation theory model, the percolation threshold (f c) was predicted to be at f Au-NYCTO = 0.69, at which f Au was estimated to ∼0.19 and close to the theoretical f c value for the conductor-insulator composites (f c = 0.16). A largely enhanced dielectric response in the Au-NYCTO/PVDF composites was contributed by the interfacial polarization effect and a high permittivity of the NYCTO ceramic filler. Au nanoparticles can produce the local electric field in the composites, making the dipole moments in the ß-PVDF phase and NYCTO particles align with the direction of the electric field.

10.
PeerJ ; 4: e2589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781173

RESUMO

BACKGROUND: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. METHODS: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. RESULTS: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. DISCUSSION: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6 h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.

11.
J Biomater Sci Polym Ed ; 26(14): 975-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147088

RESUMO

Release of drugs in a controlled and sustainable manner is of great interest for treating some inflammatory diseases, drug delivery, and cosmetics. In this work, we demonstrated the control release of a drug from composite nanofibers mediated by hydrogen peroxide. Composite nanofibers of polyvinyl alcohol (PVA)/polyoxalate (PVA/POX NFs) blended at various weight ratios were successfully prepared by electrospinning. Rhodamine B (RB) was used as a model of drug and was initially loaded into the POX portion. The morphology of NFs was characterized using scanning electron microscopy (SEM). The functional groups presented in the NFs were characterized using IR spectroscopy. In vitro release behavior and cell toxicity of nanofibers were also investigated using the MTT assay. The results indicated that POX content had a significant effect on the size and release profiles of nanofibers. Microstructure analysis revealed that sizes of PVA/POX NFs increased with increasing POX content, ranging from 214 to 422 nm. Release profiles of RB at 37 °C were non-linear and showed different release mechanisms. The mechanism of drug release depended on the chemical composition of the NFs. RB release from the NFs with highest POX content was caused by the degradation of the nanofiber matrix, whereas the RB release in lower POX content NFs was caused by diffusion. The NFs with POX showed a loss of structural integrity in the presence of hydrogen peroxide as seen using SEM. The MTT assay showed that composite nanofibers had minimal cytotoxicity. We anticipate that nanofibrous PVA/POX can potentially be used to target numerous inflammatory diseases that overproduce hydrogen peroxide and may become a potential candidate for use as a local drug delivery vehicle.


Assuntos
Sistemas de Liberação de Medicamentos , Peróxido de Hidrogênio , Nanofibras , Oxalatos , Álcool de Polivinil , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Liberação Controlada de Fármacos , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Peróxido de Hidrogênio/química , Cinética , Macrófagos/fisiologia , Teste de Materiais , Camundongos , Microscopia Eletroquímica de Varredura , Modelos Moleculares , Nanofibras/química , Dinâmica não Linear , Oxalatos/química , Álcool de Polivinil/química , Rodaminas/administração & dosagem , Rodaminas/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA