Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Biochem Biophys Res Commun ; 711: 149920, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615574

RESUMO

Tuberculosis (TB), a deadly infectious disease induced by Mycobacterium tuberculosis (Mtb), continues to be a global public health issue that kill millions of patents every year. Despite significant efforts have been paid to identify effective TB treatments, the emergence of drug-resistant strains of the disease and the presence of comorbidities in TB patients urges us to explore the detailed mechanisms involved in TB immunity and develop more effective innovative anti-TB strategies. HIF-1α, a protein involved in regulating cellular immune responses during TB infection, has been highlighted as a promising target for the development of novel strategies for TB treatment due to its critical roles in anti-TB host immunity. This review provides a summary of current research progress on the roles of HIF-1α in TB infection, highlighting its importance in regulating the host immune response upon Mtb infection and summarizing the influences and mechanisms of HIF-1α on anti-TB immunological responses of host cells. This review also discusses the various challenges associated with developing HIF-1α as a target for anti-TB therapies, including ensuring specificity and avoiding off-target effects on normal cell function, determining the regulation and expression of HIF-1α in TB patients, and developing drugs that can inhibit HIF-1α. More deep understanding of the molecular mechanisms involved in HIF-1α signaling, its impact on TB host status, and systematic animal testing and clinical trials may benefit the optimization of HIF-1α as a novel therapeutic target for TB.


Assuntos
Antituberculosos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mycobacterium tuberculosis , Transdução de Sinais , Tuberculose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/imunologia , Transdução de Sinais/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Terapia de Alvo Molecular/métodos
2.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539816

RESUMO

Cytokine storm and ROS overproduction in the lung always lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in a very short time. Effectively controlling cytokine storm release syndrome (CRS) and scavenging ROS are key to the prevention and treatment of ALI/ARDS. In this work, the naringin nanoparticles (Nar-NPs) were prepared by the emulsification and evaporation method; then, the mesenchymal stem cell membranes (CMs) were extracted and coated onto the surface of the Nar-NPs through the hand extrusion method to obtain the biomimetic CM@Nar-NPs. In vitro, the CM@Nar-NPs showed good dispersity, excellent biocompatibility, and biosafety. At the cellular level, the CM@Nar-NPs had excellent abilities to target inflamed macrophages and the capacity to scavenge ROS. In vivo imaging demonstrated that the CM@Nar-NPs could target and accumulate in the inflammatory lungs. In an ALI mouse model, intratracheal (i.t.) instillation of the CM@Nar-NPs significantly decreased the ROS level, inhibited the proinflammatory cytokines, and remarkably promoted the survival rate. Additionally, the CM@Nar-NPs increased the expression of M2 marker (CD206), and decreased the expression of M1 marker (F4/80) in septic mice, suggesting that the Nar-modulated macrophages polarized towards the M2 subtype. Collectively, this work proves that a mesenchymal stem cell membrane-based biomimetic nanoparticle delivery system could efficiently target lung inflammation via i.t. administration; the released payload inhibited the production of inflammatory cytokines and ROS, and the Nar-modulated macrophages polarized towards the M2 phenotype which might contribute to their anti-inflammation effects. This nano-system provides an excellent pneumonia-treated platform with satisfactory biosafety and has great potential to effectively deliver herbal medicine.

3.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474476

RESUMO

Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Serotonina , Estrutura Molecular , Microscopia Crioeletrônica , Antidepressivos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
J Inflamm Res ; 17: 1397-1411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476473

RESUMO

Purpose: To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods: Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results: Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion: NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.

5.
Curr Med Chem ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231073

RESUMO

Iron, copper, and zinc play integral roles in the battle against Mycobacterium tuberculosis (Mtb) infection; however, they are often trapped between nutrients and toxins, posing a significant challenge to macrophages and Mtb to utilize them. Due to this two-sided effect, macrophages and Mtb strictly regulate metal uptake, storage, and excretion. This review discusses the balanced regulation of iron, copper, and zinc in macrophages and Mtb during infection, focusing on the intracellular metal regulatory system. Macrophages typically use the two-sided effect of metals to limit Mtb access to nutrients or poison them. Mtb has developed a metal metabolism regulatory mechanism compatible with the nutritional immune strategy. This includes the mediation of relevant metalloproteins and metalloenzymes to maintain the multimetal balance. This review also explored the regulation of metal metabolism homeostasis in macrophages resistant to Mtb infection, providing a theoretical foundation for identifying potential clinical targets for Mtb infection, developing metalloid anti-tuberculosis drugs, and understanding the immune mechanisms against intracellular Mtb infection.

6.
Animals (Basel) ; 13(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003063

RESUMO

(1) Background: Two-dimensional shear wave elastography (2D-SWE) is a non-invasive method widely used in human medicine to assess the extent of liver fibrosis but only rarely applied to veterinary medicine. This study aimed to measure liver stiffness in healthy dogs and investigate the factors that impacted 2D-SWE measurement. (2) Methods: In total, 55 healthy dogs were enrolled and subjected to 2D-SWE measurements before and after anesthesia administration. Post-anesthesia 2D-SWE measurements and computerized tomography (CT) scans were obtained. (3) Results: The liver stiffness range in healthy dogs was 3.96 ± 0.53 kPa. In a stratified analysis based on confounding factors, liver stiffness was influenced by measurement site and anesthesia, but not by sex. No correlation was observed between liver stiffness and weight or liver CT attenuation. (4) Conclusions: 2D-SWE is feasible for liver stiffness measurement in dogs. Anesthesia and measurement site are sources of variability. Therefore, these factors should be considered while recording 2D-SWE measurements. Our data on liver stiffness in healthy dogs can serve as the basis for future studies on 2D-SWE to assess pathological conditions in dogs.

8.
Front Bioeng Biotechnol ; 11: 1254356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823027

RESUMO

Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.

9.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817142

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Ferro
10.
Pharmaceutics ; 15(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631310

RESUMO

Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.

11.
Biomater Sci ; 11(18): 6223-6235, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37529873

RESUMO

Patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome) are often septic and with poor prognosis, which leads to a high mortality rate of 25-40%. Despite the advances in medicine, there are no effective pharmacological therapies for ALI/ARDS due to the short systemic circulation and poor specificity in the lungs. To address this problem, we prepared TP-loaded nanoparticles (TP-NPs) through the emulsification-and-evaporation method, and then the platelet membrane vesicles were extracted and coated onto the surface of the NPs to constitute the biomimetic PM@TP-NPs. In a LPS-induced ALI mouse model, PM@TP-NPs showed good biocompatibility and biosafety, which was evidenced by no significant toxic effect on cell viability and no hemolysis of red blood cells. In ALI mice, the PM@TP-NPs showed favorable anti-inflammation and enhanced therapeutic activity of TPs compared to the free drug. Administration of PM@TP-NPs effectively inhibited lung vascular injury, evidenced by the decreased lung vascular permeability, reduced pro-inflammatory cytokine burden, evidenced by decreased inflammatory cell (macrophages, neutrophils, etc.) infiltration in the bronchoalveolar lavage fluid (BALF) and lung tissues, and inhibited the secretion of pro-inflammatory cytokines and NLRP3 inflammasome activation. ALI/ARDS is defined by damage to the alveolar epithelium and endothelium; thus, effective intervention targeting pulmonary vascular endothelial cells (VECs) is crucial for the treatment of respiratory diseases. For further determination of the targeting of PM cloaked NPs, healthy mice were also administered with the same NPs. Interestingly, the PM cloaked NPs only showed highly efficient targeting to the inflamed lungs and VECs, but no accumulation in healthy lungs and VECs. The data demonstrated that this biomimetic nanoplatform could be used as a potential strategy for personalized therapies in the treatment of inflammatory diseases, such as ALI/ARDS, and even COVID-19-associated pneumonia.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Nanopartículas , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Células Endoteliais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , Chá/efeitos adversos , Camundongos Endogâmicos C57BL
12.
Pharmaceutics ; 15(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37514054

RESUMO

Cancer immunotherapy is an innovative treatment strategy to enhance the ability of the immune system to recognize and eliminate cancer cells. However, dose limitations, low response rates, and adverse immune events pose significant challenges. To address these limitations, gold nanoparticles (AuNPs) have been explored as immunotherapeutic drug carriers owing to their stability, surface versatility, and excellent optical properties. This review provides an overview of the advanced synthesis routes for AuNPs and their utilization as drug carriers to improve precision therapies. The review also emphasises various aspects of AuNP-based immunotherapy, including drug loading, targeting strategies, and drug release mechanisms. The application of AuNPs combined with cancer immunotherapy and their therapeutic efficacy are briefly discussed. Overall, we aimed to provide a recent understanding of the advances, challenges, and prospects of AuNPs for anticancer applications.

13.
J Interferon Cytokine Res ; 43(6): 269-279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319356

RESUMO

Mycobacterium tuberculosis (Mtb) infection elicits macrophage polarization into M2 phenotype to block the host's protective immune response. However, it remains unclear how Mtb regulates macrophage polarization. Recent studies have suggested that noncoding RNA may play a role in macrophage polarization. In this study, we investigated the potential involvement of circTRAPPC6B, a circular RNA that is downregulated in tuberculosis (TB) patients, in regulating macrophage polarization. We found that Mtb infection downregulated M1-related IL-6 and IL-1ß while highly expressed M2-related CCL22 and CD163. Overexpressed circTRAPPC6B had switched Mtb-infected macrophages from M2- to M1-like phenotype, accompanied by upregulation of IL-6 and IL-1ß. Meanwhile overexpressed circTRAPPC6B significantly inhibited Mtb growth in macrophages. Our findings suggest that circTRAPPC6B may regulate macrophage polarization by targeting miR-892c-3p, which is highly expressed in TB patients and M2-like macrophages. And miR-892c-3p inhibitor decreased intracellular Mtb growth in macrophages. Thus, TB-inhibited circTRAPPC6B could specifically induce IL-6 and IL-1ß expression to switch/antagonize Mtb-induced macrophage polarization from M2- to M1-like phenotype by targeting miR-892c-3p, leading to enhanced host clearance of Mtb. Our results reveal a potential role for circTRAPPC6B in regulating macrophage polarization during Mtb infection and provide new insights into the molecular mechanisms underlying host defense against Mtb.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Humanos , Interleucina-6/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Macrófagos/metabolismo , Fenótipo , MicroRNAs/metabolismo
14.
Front Immunol ; 14: 1156239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153576

RESUMO

As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Manganês , Compostos de Manganês/farmacologia , Óxidos/uso terapêutico , Nucleotidiltransferases/metabolismo , Neoplasias/tratamento farmacológico
15.
Curr Microbiol ; 80(5): 171, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024713

RESUMO

Dengue remains a public health issue worldwide. Similar to chronic infectious diseases, stimulation of cytokine production is not enough to drive immune effector cells for effective virus clearance. One possible mechanism is the virus induces a large number of negative stimulatory cytokines inhibiting immune response. Interleukin 37 (IL-37) plays a crucial regulatory role in infection and immunity, inhibits innate and adaptive immunity as an anti-inflammatory cytokine by inhibiting proinflammatory mediators and pathways. To date, there are few studies reporting correlations between dengue fever (DF) and IL-37. In this study we found that the serum IL-37b and IL-37b-producing monocytes in patients were significantly increased in DF patients. A majority of the IL-37b produced by DF patients was produced by monocytes, not lymphocytes. Increased levels of IL-6, IL-10, and IFN-α were also found in DF patients. However, we failed to detect IL-1ß, IL-17A and TNF-α in plasma, because of off-target. In our study, there was no relation between IL-6, IL-10, and IFN-α expressions and IL-37b in serum (P > 0.05). The IL-37b-producing monocytes were negatively correlated with the level of IFN-α in serum and platelet count, and positively correlated with lymphocytes percentage (P < 0.05, respectively). Additionally, serum DENV nonstructural protein 1 levels were positively correlated with monocytes percentages (P < 0.05). Our data represents findings for IL-37b expression and its potential mechanisms in DF patients' immune response.


Assuntos
Vírus da Dengue , Dengue , Humanos , Interleucina-10 , Vírus da Dengue/fisiologia , Interleucina-6 , Carga Viral , Citocinas
17.
Front Microbiol ; 14: 1159629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925483
18.
Front Immunol ; 14: 1128840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926351

RESUMO

Manganese (Mn), a nutrient inorganic trace element, is necessary for a variety of physiological processes of animal body due to their important roles in oxidative regulation effects and other aspects of activities. Moreover, manganese ion (Mn2+) has widely reported to be crucial for the regulations of different immunological responses, thus showing promising application as potential adjuvants and immunotherapeutics. Taking the advantages of Mn-based biological and immunological activities, Manganese dioxide nanoparticles (MnO2 NPs) are a new type of inorganic nanomaterials with numerous advantages, including simple preparation, low cost, environmental friendliness, low toxicity, biodegradable metabolism and high bioavailability. MnO2 NPs, as a kind of drug carrier, have also shown the ability to catalyze hydrogen peroxide (H2O2) to produce oxygen (O2) under acidic conditions, which can enhance the efficacy of radiotherapy, chemotherapy and other therapeutics for tumor treatment by remodeling the tumor microenvironment. More importantly, MnO2 NPs also play important roles in immune regulations both in innate and adaptive immunity. In this review, we summarize the biological activities of Manganese, followed by the introduction for the biological and medical functions and mechanisms of MnO2 NPs. What's more, we emphatically discussed the immunological regulation effects and mechanisms of MnO2 NPs, as well as their potentials to serve as adjuvants and immunomodulators, which might benefit the development of novel vaccines and immunotherapies for more effective disease control.


Assuntos
Nanopartículas , Vacinas , Animais , Compostos de Manganês/farmacologia , Compostos de Manganês/metabolismo , Manganês , Óxidos/farmacologia , Peróxido de Hidrogênio/metabolismo , Nanopartículas/metabolismo , Oxigênio , Imunoterapia
19.
Acta Pharm Sin B ; 13(3): 1303-1317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970207

RESUMO

In situ and real-time monitoring of responsive drug release is critical for the assessment of pharmacodynamics in chemotherapy. In this study, a novel pH-responsive nanosystem is proposed for real-time monitoring of drug release and chemo-phototherapy by surface-enhanced Raman spectroscopy (SERS). The Fe3O4@Au@Ag nanoparticles (NPs) deposited graphene oxide (GO) nanocomposites with a high SERS activity and stability are synthesized and labeled with a Raman reporter 4-mercaptophenylboronic acid (4-MPBA) to form SERS probes (GO-Fe3O4@Au@Ag-MPBA). Furthermore, doxorubicin (DOX) is attached to SERS probes through a pH-responsive linker boronic ester (GO-Fe3O4@Au@Ag-MPBA-DOX), accompanying the 4-MPBA signal change in SERS. After the entry into tumor, the breakage of boronic ester in the acidic environment gives rise to the release of DOX and the recovery of 4-MPBA SERS signal. Thus, the DOX dynamic release can be monitored by the real-time changes of 4-MPBA SERS spectra. Additionally, the strong T2 magnetic resonance (MR) signal and NIR photothermal transduction efficiency of the nanocomposites make it available for MR imaging and photothermal therapy (PTT). Altogether, this GO-Fe3O4@Au@Ag-MPBA-DOX can simultaneously fulfill the synergistic combination of cancer cell targeting, pH-sensitive drug release, SERS-traceable detection and MR imaging, endowing it great potential for SERS/MR imaging-guided efficient chemo-phototherapy on cancer treatment.

20.
Front Nutr ; 10: 1116051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819694

RESUMO

Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA