Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760652

RESUMO

Nosocomial infections caused by Escherichia coli pose significant therapeutic challenges due to the high expression of genes encoding antimicrobial drug resistance. In this study, we investigated the conformation of the beta-lactam resistome responsible for the specific pattern of resistance against beta-lactam antibiotics. A total of 218 Escherichia coli strains were isolated from in-hospital patients diagnosed with nosocomial infections, obtained from various sources such as urine (n = 49, 22.48%), vaginal discharge (n = 46, 21.10%), catheter tips (n = 14, 6.42%), blood (n = 13, 5.96%), feces (n = 12, 5.50%), sputum (n = 11, 5.05%), biopsies (n = 8, 3.67%), cerebrospinal fluid (n = 2, 0.92%) and other unspecified discharges (n = 63, 28.90%). To characterize the beta-lactam resistome, all strains were subjected to antibiotic dilution tests and grown in beta-lactam antibiotics supplemented with Luria culture medium. Subsequently, multiplex PCR and next-generation sequencing were conducted. The results show a multi-drug-resistance phenotype, particularly against beta-lactam drugs. The primary determinant of this resistance was the expression of the blaTEM gene family, with 209 positive strains (95.87%) expressing it as a single gene (n = 47, 21.6%) or in combination with other genes. Common combinations included blaTEM + blaCTX (n = 42, 19.3%), blaTEM + blaCTX + blaSHV (n = 13, 6%) and blaTEM + blaCTX + blaBIL (n = 12, 5.5%), among others. The beta-lactam resistome of nosocomial Escherichia coli strains isolated from inpatients at the "October first" Regional Hospital of ISSSTE was predominantly composed of members of the blaTEM gene family, expressed in various configurations along with different members of other beta-lactamase gene families.

2.
Life (Basel) ; 12(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36143447

RESUMO

Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night-day interphase and peaking at 14.63 h. Similarly, DA and DOPAC's spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.

3.
Zookeys ; 1072: 107-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899009

RESUMO

Crayfish serve as a model for studying the effect of environmental lighting on locomotor activity and neuroendocrine functions. The effects of light on this organism are mediated differentially by retinal and extraretinal photoreceptors located in the cerebroid ganglion and the pleonal nerve cord. However, some molecular aspects of the phototransduction cascade in the pleonal extraretinal photoreceptors remain unknown. In this study, transcriptome data from the pleonal nerve cord of the crayfish Procambarusclarkii (Girard,1852) were analyzed to identify transcripts that potentially interact with phototransduction process. The Illumina MiSeq System and the pipeline Phylogenetically Informed Annotation (PIA) were employed, which places uncharacterized genes into pre-calculated phylogenies of gene families. Here, for the first time 62 transcripts identified from the pleonal nerve cord that are related to light-interacting pathways are reported; they can be classified into the following 11 sets: 1) retinoid pathway in vertebrates and invertebrates, 2) photoreceptor specification, 3) rhabdomeric phototransduction, 4) opsins 5) ciliary phototransduction, 6) melanin synthesis, 7) pterin synthesis, 8) ommochrome synthesis, 9) heme synthesis, 10) diurnal clock, and 11) crystallins. Moreover, this analysis comparing the sequences located on the pleonal nerve cord to eyestalk sequences reported in other studies reveals 94-100% similarity between the 55 common proteins identified. These results show that both retinal and pleonal non-visual photoreceptors in the crayfish equally expressed the transcripts involved in light detection. Moreover, they suggest that the genes related to ocular and extraocular light perception in the crayfish P.clarkii use biosynthesis pathways and phototransduction cascades commons.

4.
J Circadian Rhythms ; 19: 9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326881

RESUMO

The purpose of this study was to analyze the light-dark variations in the concentrations of several neurotransmitters in the lumbar spinal cord of rats. Six groups of male Wistar rats were exposed to a 12 h light-12 h dark cycle for 70 days. At different time points of the experimental day (8, 12, 16, 20, 24 and 4 h), one of the groups of rats was randomly selected to be sacrificed, and the spinal cords were removed. The gamma-aminobutyric acid (GABA), glutamate (GLU), dopamine, serotonin, epinephrine (E), and norepinephrine (NE) levels in each extracted spinal cord were measured with high-pressure liquid chromatography (HPLC)-EQ and HPLC-fluorescence systems. Our results indicate that the spinal concentrations of GABA and GLU showed sinusoidal variation in a 24 h cycle, with the highest peak in the dark period (~20 h). Dopamine and serotonin also fluctuated in concentration but peaked in the light period (between 8 and 12 h), while E and NE concentrations showed no significant fluctuations. The possible relationship between neurotransmitter spinal concentration and sensitivity to pain and locomotor activity is discussed. It was concluded that most of the neurotransmitter levels in the lumbar spinal cord showed circadian fluctuations coupled to a light-dark cycle.

5.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204872

RESUMO

Antibiotic resistance is a major health problem worldwide, causing more deaths than diabetes and cancer. The dissemination of vertical and horizontal antibiotic resistance genes has been conducted for a selection of pan-resistant bacteria. Here, we test if the aerobic and anaerobic bacteria from human feces samples in health conditions are carriers of beta-lactamases genes. The samples were cultured in a brain-heart infusion medium and subcultured in blood agar in aerobic and anaerobic conditions for 24 h at 37 °C. The grown colonies were identified by their biochemical profiles. The DNA was extracted and purified by bacterial lysis using thermal shock and were used in the endpoint PCR and next generation sequencing to identify beta-lactamase genes expression (OXA, VIM, SHV, TEM, IMP, ROB, KPC, CMY, DHA, P, CFX, LAP, and BIL). The aerobic bacterias Aeromonas hydrophila, Citrobacter freundii, Proteus mirabilis, Providencia rettgeri, Serratia fonticola, Serratia liquefaciens, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pantoea agglomerans, Enterococcus faecalis, and Enterobacter cloacae, the anaerobic bacteria: Capnocytophaga species, Bacteroides distasonis, Bifidobacterium adolescentis, Bacteroides ovatus, Bacteroides fragilis, Eubacterium species, Eubacterium aerofaciens, Peptostreptococcus anaerobius, Fusobacterium species, Bacteroides species, and Bacteroides vulgatus were isolated and identified. The results showed 49 strains resistant to beta-lactam with the expression of blaSHV (10.2%), blaTEM (100%), blaKPC (10.2%), blaCYM (14.3%), blaP (2%), blaCFX (8.2%), and blaBIL (6.1%). These data support the idea that the human enteric microbiota constitutes an important reservoir of genes for resistance to beta-lactamases and that such genes could be transferred to pathogenic bacteria.

6.
Synapse ; 74(8): e22152, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32068305

RESUMO

Dopamine D3 R are widely expressed in basal ganglia where interact with D1 R. D3 R potentiate cAMP accumulation and GABA release stimulated by D1 R in striatonigral neurons through "atypical" signaling. During dopaminergic denervation, D3 R signaling changes to a "typical" in which antagonizes the effects of D1 R, the mechanisms of this switching are unknown. D3 nf splice variant regulates membrane anchorage and function of D3 R and decreases in denervation; thus, it is possible that D3 R signaling switching correlates with changes in D3 nf expression and increases of membranal D3 R that mask D3 R atypical effects. We performed experiments in unilaterally 6-hydroxydopamine lesioned rats and found a decrease in mRNA and protein of D3 nf, but not of D3 R in the denervated striatum. Proximity ligation assay showed that D3 R-D3 nf interaction decreased after denervation, whereas binding revealed an increased Bmax in D3 R. The new D3 R antagonized cAMP accumulation and GABA release stimulated by D1 R; however, in the presence of N-Ethylmaleimide (NEM), to block Gi protein signaling, activation of D3 R produced its atypical signaling stimulating D1 R effects. Finally, we investigated if the typical and atypical effects of D3 R modulating GABA release are capable of influencing motor behavior. Injections of D3 R agonist into denervated nigra decreased D1 R agonist-induced turning behavior but potentiated it in the presence of NEM. Our data indicate the coexistence of D3 R typical and atypical signaling in striatonigral neurons during denervation that correlated with changes in the ratio of expression of D3 nf and D3 R isoforms. The coexistence of both atypical and typical signaling during denervation influences motor behavior.


Assuntos
Receptores de Dopamina D3/metabolismo , Transdução de Sinais , Substância Negra/metabolismo , Animais , AMP Cíclico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Masculino , Movimento , Bloqueio Nervoso , Splicing de RNA , Ratos , Ratos Wistar , Receptores de Dopamina D3/genética , Substância Negra/citologia , Substância Negra/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
High Throughput ; 7(3)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213058

RESUMO

The freshwater crayfish Procambarus clarkii is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from P. clarkii to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for P. clarkii. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.

8.
Oxid Med Cell Longev ; 2013: 240560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23997853

RESUMO

Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc.


Assuntos
Artéria Carótida Primitiva/efeitos dos fármacos , Caspase 3/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , NG-Nitroarginina Metil Éster/uso terapêutico , Óxido Nítrico/metabolismo , Zinco/metabolismo , Zinco/uso terapêutico , Animais , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA