Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Nanobiotechnology ; 21(1): 329, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710290

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia and loss of autonomy in the elderly, implying a progressive cognitive decline and limitation of social activities. The progressive aging of the population is expected to exacerbate this problem in the next decades. Therefore, there is an urgent need to develop quantitative diagnostic methodologies to assess the onset the disease and its progression especially in the initial phases. RESULTS: Here we describe a novel technology to extract one of the most important molecular biomarkers of AD (Aß1-42) from a clinically-relevant volume - 100 µl - therein dispersed in a range of concentrations critical for AD early diagnosis. We demonstrate that it is possible to immunocapture Aß1-42 on 20 nm wide magnetic nanoparticles functionalized with hyperbranced KVLFF aptamers. Then, it is possible to transport them through microfluidic environments to a detection system where virtually all (~ 90%) the Aß1-42 molecules are concentrated in a dense plug of ca.50 nl. The technology is based on magnetic actuation by permanent magnets, specifically designed to generate high gradient magnetic fields. These fields, applied through submillimeter-wide channels, can concentrate, and confine magnetic nanoparticles (MNPs) into a droplet with an optimized shape that maximizes the probability of capturing highly diluted molecular biomarkers. These advancements are expected to provide efficient protocols for the concentration and manipulation of molecular biomarkers from clinical samples, enhancing the accuracy and the sensitivity of diagnostic technologies. CONCLUSIONS: This easy to automate technology allows an efficient separation of AD molecular biomarkers from volumes of biological solutions complying with the current clinical protocols and, ultimately, leads to accurate measurements of biomarkers. The technology paves a new way for a quantitative AD diagnosis at the earliest stage and it is also adaptable for the biomarker analysis of other pathologies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Envelhecimento , Campos Magnéticos , Microfluídica
2.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408256

RESUMO

Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.


Assuntos
Tauopatias , Camundongos , Animais , Tauopatias/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
3.
Sci Rep ; 13(1): 5301, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002375

RESUMO

The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm. The device is based on a specifically tailored configuration of movable permanent magnets. The experiments performed in 500 µm capillary have shown the ability to concentrate the SP-MNPs into regions characterized by different shapes and sizes ranging from 100 to 200 µm. The results are explained by straightforward calculations and comparison between magnetic and thermal energies. We provide then a comprehensive description of the magnetic field intensity and its spatial distribution for the confinement and motion of magnetic nanoparticles for a wide range of sizes. We believe this description could be used to establish accurate and quantitative magnetic protocols not only for biomedical applications, but also for environment, food, security, and other areas.

4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614190

RESUMO

The reconstruction of large segmental defects still represents a critical issue in the orthopedic field. The use of functionalized scaffolds able to create a magnetic environment is a fascinating option to guide the onset of regenerative processes. In the present study, a porous hydroxyapatite scaffold, incorporating superparamagnetic Fe3O4 nanoparticles (MNPs), was implanted in a critical bone defect realized in sheep metatarsus. Superparamagnetic nanoparticles functionalized with hyperbranched poly(epsilon-Lysine) peptides and physically complexed with vascular endothelial growth factor (VEGF) where injected in situ to penetrate the magnetic scaffold. The scaffold was fixed with cylindrical permanent NdFeB magnets implanted proximally, and the magnetic forces generated by the magnets enabled the capture of the injected nanoparticles forming a VEGF gradient in its porosity. After 16 weeks, histomorphometric measurements were performed to quantify bone growth and bone-to-implant contact, while the mechanical properties of regenerated bone via an atomic force microscopy (AFM) analysis were investigated. The results showed increased bone regeneration at the magnetized interface; this regeneration was higher in the VEGF-MNP-treated group, while the nanomechanical behavior of the tissue was similar to the pattern of the magnetic field distribution. This new approach provides insights into the ability of magnetic technologies to stimulate bone formation, improving bone/scaffold interaction.


Assuntos
Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Ovinos , Animais , Alicerces Teciduais/química , Regeneração Óssea , Durapatita/química , Osteogênese , Porosidade
5.
Adv Sci (Weinh) ; 10(5): e2203397, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509677

RESUMO

Challenging magnetic hyperthermia (MH) applications of immobilized magnetic nanoparticles require detailed knowledge of the effective anisotropy constant (Keff ) to maximize heat release. Designing optimal MH experiments entails the precise determination of magnetic properties, which are, however, affected by the unavoidable concurrence of magnetic interactions in common experimental conditions. In this work, a mean-field energy barrier model (ΔE), accounting for anisotropy (EA ) and magnetic dipolar (ED ) energy, is proposed and used in combination with AC measurements to a specifically developed model system of spherical magnetic nanoparticles with well-controlled silica shells, acting as a spacer between the magnetic cores. This approach makes it possible to experimentally demonstrate the mean field dipolar interaction energy prediction with the interparticle distance, dij , ED ≈ 1/dij 3 and obtain the EA as the asymptotic limit for very large dij . In doing so, Keff uncoupled from interaction contributions is obtained for the model system (iron oxide cores with average sizes of 8.1, 10.2, and 15.3 nm) revealing to be 48, 23, and 11 kJ m-3 , respectively, close to bulk magnetite/maghemite values and independent from the specific spacing shell thicknesses selected for the study.

6.
ACS Biomater Sci Eng ; 9(1): 303-317, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490313

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.


Assuntos
Nanopartículas de Magnetita , Animais , Nanopartículas de Magnetita/toxicidade , Dióxido de Silício/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Indóis/farmacologia
8.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407297

RESUMO

Undoped and Mg-doped (y = [Mg2+]/[Fe3+] = 1, 2, 3, and 4 at.%) Fe2O3 thin films were synthesized by a simple spray pyrolysis technique. The thin films were extensively characterized. X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) analysis confirmed the successful insertion of Mg in the rhombohedral structure of Fe2O3. In addition, scanning electronic microscope (SEM) and confocal microscope (CM) images showed a homogenous texture of the film, which was free of defects. The rough surface of the film obtained by spray pyrolysis is an important feature for photocatalysis and gas sensor applications. The direct band gap of the doped Fe2O3 films obtained for [Mg2+]/[Fe3+] = 3 at.% was Edir = 2.20 eV, which recommends the Mg-doped iron oxide as an optical window or buffer layer in solar cell devices. The photodegradation performance of Mg-doped Fe2O3 was assessed by studying the removal of methylene blue (MB) under sunlight irradiation, with an effective removal efficiency of 90% within 180 min. The excellent photodegradation activity was attributed to the strong absorption of Mg-doped Fe2O3 in the UV and most of the visible light, and to the effective separation of photogenerated charge carriers.

9.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159800

RESUMO

Exchange bias (EB) properties have become especially important in hollow magnetic nanoparticles (MNPs) due to the versatility and reduced size of these materials. In this work, we present the synthesis and study of the EB properties of iron-oxide-based hollow MNPs and their precursors Fe/iron oxide MNPs with core/void/shell structure. The two mechanisms involved in EB generation were investigated: the frozen spins present in the nanograins that form the nanoparticles and the surface spins. The effect of external parameters on the coercivity (HC), remanence (MR), exchange bias field (HEB) and frozen spins, such as cooling field (HFC) and temperature, was investigated. Both HC and HEB present a maximum threshold above which their values begin to decrease with HFC, showing a new trend of HEB with HFC and allowing modulation on demand. The existence of surface spins, present on the outer and inner surfaces, was demonstrated, and an intrinsic EB phenomenon (HEB = 444 Oe for hollow iron oxide-based MNPs of 13.1 nm) with significant magnetization (MS~50 emu/g) was obtained. Finally, core/void/shell MNPs of 11.9 nm prior to the formation of the hollow MNPs showed a similar behavior, with non-negligible HEB, highlighting the importance of surface spins in EB generation.

10.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835666

RESUMO

In recent years, the application of magnetic nanoparticles as alternative catalysts to conventional Fenton processes has been investigated for the removal of emerging pollutants in wastewater. While this type of catalyst reduces the release of iron hydroxides with the treated effluent, it also presents certain disadvantages, such as slower reaction kinetics associated with the availability of iron and mass transfer limitations. To overcome these drawbacks, the functionalization of the nanocatalyst surface through the addition of coatings such as polyacrylic acid (PAA) and their immobilization on a mesoporous silica matrix (SBA15) can be factors that improve the dispersion and stability of the nanoparticles. Under these premises, the performance of the nanoparticle coating and nanoparticle-mesoporous matrix binomials in the degradation of dyes as examples of recalcitrant compounds were evaluated. Based on the outcomes of dye degradation by the different functionalized nanocatalysts and nanocomposites, the nanoparticles embedded in a mesoporous matrix were applied for the removal of estrogens (E1, E2, EE2), accomplishing high removal percentages (above 90%) after the optimization of the operational variables. With the feasibility of their recovery in mind, the nanostructured materials represented a significant advantage as their magnetic character allows their separation for reuse in different successive sequential batch cycles.

11.
Nanomaterials (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669767

RESUMO

Today, the presence of recalcitrant pollutants in wastewater, such as pharmaceuticals or other organic compounds, is one of the main obstacles to the widespread implementation of water reuse. In this context, the development of innovative processes for their removal becomes necessary to guarantee effluent quality. This work presents the potentiality of magnetic nanoparticles immobilized on SBA-15 mesoporous silica as Fenton and photo-Fenton catalysts under visible light irradiation. The influence of the characteristics of the compounds and nanoparticles on the removal yield was investigated. Once the key aspects of the reaction mechanism were analyzed, to evaluate the feasibility of this process, an azo dye (Orange II) and an antibiotic (sulfamethoxazole) were selected as main target compounds. The concentration of Orange II decreased below the detection limit after two hours of reaction, with mineralization values of 60%. In addition, repeated sequential experiments revealed the recoverability and stability of the nanoparticles in a small-scale reactor. The benchmarking of the obtained results showed a significant improvement of the process using visible light in terms of kinetic performance, comparing the results to the Fenton process conducted at dark. Reusability, yield and easy separation of the catalyst are its main advantages for the industrial application of this process.

12.
Biomed Mater Eng ; 32(4): 243-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780354

RESUMO

BACKGROUND: The intricate structure of natural materials is in correspondence with its highly complex functional behaviour. The health of teeth depends, in a complex way, on a heterogeneous arrangement of soft and hard porous tissues that allow for an adequate flow of minerals and oxygen to provide continuous restoration. Although restorative materials, used in clinics, have been evolving from the silver amalgams to actual inorganic fillers, their structural and textural properties are scarcely biomimetic, hindering the functional recovery of the tissue. OBJECTIVE: The objective of this work is to compare and test the hybrid mesoporous silica-based scaffolds as candidates for dentine restoration applications. METHODS: In this work, we present the development and the physical properties study of biocompatible hybrid mesoporous nanostructured scaffolds with a chemically versatile surface and biosimilar architecture. We test their textural (BET) and dielectric permittivity (ac impedance) properties. RESULTS: These materials, with textural and dielectric properties similar to dentine and large availability for the payload of therapeutic agents, are promising candidates as functional restorative materials, suitable for impedance characterization techniques in dental studies. CONCLUSIONS: Structural, textural, morphological characterization and electrical properties of hybrid mesoporous show a large degree of similarity to natural dentin samples.


Assuntos
Medicamentos Biossimilares , Nanoestruturas , Porosidade , Dióxido de Silício
13.
Antibiotics (Basel) ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513680

RESUMO

The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP's stabilizer, but also through the application of a suitable magnetic field. Antimicrobial synergistic CuNPs stabilized by benzalkonium chloride have been used in the current study. We demonstrate the successful preparation of Cu@Fe3O4 MNPs composites through morphological and spectroscopic results. Additionally, an extensive magnetic characterization is reported, along with hyperthermia-induced copper ionic release. On the basis of our results, we propose a new generation of antimicrobial magnetic nanomaterials, whose bioactivity can be also tuned by the application of a magnetic field.

14.
EJNMMI Res ; 10(1): 73, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32607918

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have shown potential for treatment of different diseases. However, their working mechanism is still unknown. To elucidate this, the non-invasive and longitudinal tracking of MSCs would be beneficial. Both iron oxide-based nanoparticles (Fe3O4 NPs) for magnetic resonance imaging (MRI) and radiotracers for positron emission tomography (PET) have shown potential as in vivo cell imaging agents. However, they are limited by their negative contrast and lack of spatial information as well as short half-life, respectively. In this proof-of-principle study, we evaluated the potential of Fe3O4@Al(OH)3 NPs as dual PET/MRI contrast agents, as they allow stable binding of [18F]F- ions to the NPs and thus, NP visualization and quantification with both imaging modalities. RESULTS: 18F-labeled Fe3O4@Al(OH)3 NPs (radiolabeled NPs) or mouse MSCs (mMSCs) labeled with these radiolabeled NPs were intravenously injected in healthy C57Bl/6 mice, and their biodistribution was studied using simultaneous PET/MRI acquisition. While liver uptake of radiolabeled NPs was seen with both PET and MRI, mMSCs uptake in the lungs could only be observed with PET. Even some initial loss of fluoride label did not impair NPs/mMSCs visualization. Furthermore, no negative effects on blood cell populations were seen after injection of either the NPs or mMSCs, indicating good biocompatibility. CONCLUSION: We present the application of novel 18F-labeled Fe3O4@Al(OH)3 NPs as safe cell tracking agents for simultaneous PET/MRI. Combining both modalities allows fast and easy NP and mMSC localization and quantification using PET at early time points, while MRI provides high-resolution, anatomic background information and long-term NP follow-up, hereby overcoming limitations of the individual imaging modalities.

15.
Biosensors (Basel) ; 10(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707868

RESUMO

Superparamagnetic iron oxide nanoflowers coated by a black carbon layer (Fe3O4@C) were studied as labels in lateral flow immunoassays. They were synthesized by a one-pot solvothermal route, and they were characterized (size, morphology, chemical composition, and magnetic properties). They consist of several superparamagnetic cores embedded in a carbon coating holding carboxylic groups adequate for bioconjugation. Their multi-core structure is especially efficient for magnetic separation while keeping suitable magnetic properties and appropriate size for immunoassay reporters. Their functionality was tested with a model system based on the biotin-neutravidin interaction. For this, the nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the lateral flow immunoassay was carried out with a biotin test line. Quantification was achieved with both an inductive magnetic sensor and a reflectance reader. In order to further investigate the quantifying capacity of the Fe3O4@C nanoflowers, the magnetic lateral flow immunoassay was tested as a detection system for extracellular vesicles (EVs), a novel source of biomarkers with interest for liquid biopsy. A clear correlation between the extracellular vesicle concentration and the signal proved the potential of the nanoflowers as quantifying labels. The limit of detection in a rapid test for EVs was lower than the values reported before for other magnetic nanoparticle labels in the working range 0-3 × 107 EVs/µL. The method showed a reproducibility (RSD) of 3% (n = 3). The lateral flow immunoassay (LFIA) rapid test developed in this work yielded to satisfactory results for EVs quantification by using a precipitation kit and also directly in plasma samples. Besides, these Fe3O4@C nanoparticles are easy to concentrate by means of a magnet, and this feature makes them promising candidates to further reduce the limit of detection.


Assuntos
Técnicas Biossensoriais , Imunoensaio/métodos , Carbono , Limite de Detecção , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas , Reprodutibilidade dos Testes
16.
Nanomaterials (Basel) ; 10(4)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260522

RESUMO

The main task of this work is to study the tribological performance of nanolubricants formed by trimethylolpropane trioleate (TMPTO) base oil with magnetic nanoparticles coated with oleic acid: Fe3O4 of two sizes 6.3 nm and 10 nm, and Nd alloy compound of 19 nm. Coated nanoparticles (NPs) were synthesized via chemical co-precipitation or thermal decomposition by adsorption with oleic acid in the same step. Three nanodispersions of TMPTO of 0.015 wt% of each NP were prepared, which were stable for at least 11 months. Two different types of tribological tests were carried out: pure sliding conditions and rolling conditions (5% slide to roll ratio). With the aim of analyzing the wear by means of the wear scar diameter (WSD), the wear track depth and the volume of the wear track produced after the first type of the tribological tests, a 3D optical profiler was used. The best tribological performance was found for the Nd alloy compound nanodispersion, with reductions of 29% and 67% in friction and WSD, respectively, in comparison with TMPTO. On the other hand, rolling conditions tests were utilized to study friction and film thickness of nanolubricants, determining that Fe3O4 (6.3 nm) nanolubricant reduces friction in comparison to TMPTO.

19.
ACS Appl Mater Interfaces ; 12(8): 9017-9031, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999088

RESUMO

The use of magnetic nanoparticles as theranostic agents for the detection and treatment of cancer diseases has been extensively analyzed in the last few years. In this work, cubic-shaped cobalt and zinc-doped iron oxide nanoparticles with edge lengths in the range from 28 to 94 nm are proposed as negative contrast agents for magnetic resonance imaging and to generate localized heat by magnetic hyperthermia, obtaining high values of transverse relaxation coefficients and specific adsorption rates. The applied magnetic fields presented suitable characteristics for the potential validation of the results into the clinical practice in all cases. Pure iron oxide and cobalt- and zinc-substituted ferrites have been structurally and magnetically characterized, observing magnetite as the predominant phase and weak ferrimagnetic behavior at room temperature, with saturation values even larger than those of bulk magnetite. The coercive force increased due to the incorporation of cobalt ions, while zinc substitution promotes a significant increase in saturation magnetization. After their transfer to aqueous solution, those particles showing the best properties were chosen for evaluation in in vitro cell models, exhibiting high critical cytotoxic concentrations and high internalization degrees in several cell lines. The magnetic behavior of the nanocubes after their successful cell internalization was analyzed, detecting negligible variations on their magnetic hysteresis loops and a significant decrease in the specific adsorption rate values.


Assuntos
Cobalto , Compostos Férricos , Hipertermia Induzida , Campos Magnéticos , Nanopartículas , Neoplasias/terapia , Zinco , Animais , Anisotropia , Cobalto/química , Cobalto/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Células HeLa , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Células RAW 264.7 , Zinco/química , Zinco/farmacologia
20.
Nanomaterials (Basel) ; 9(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731823

RESUMO

Early diagnosis of disease and follow-up of therapy is of vital importance for appropriate patient management since it allows rapid treatment, thereby reducing mortality and improving health and quality of life with lower expenditure for health care systems. New approaches include nanomedicine-based diagnosis combined with therapy. Nanoparticles (NPs), as contrast agents for in vivo diagnosis, have the advantage of combining several imaging agents that are visible using different modalities, thereby achieving high spatial resolution, high sensitivity, high specificity, morphological, and functional information. In this work, we present the development of aluminum hydroxide nanostructures embedded with polyacrylic acid (PAA) coated iron oxide superparamagnetic nanoparticles, Fe3O4@Al(OH)3, synthesized by a two-step co-precipitation and forced hydrolysis method, their physicochemical characterization and first biomedical studies as dual magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents for cell imaging. The so-prepared NPs are size-controlled, with diameters below 250 nm, completely and homogeneously coated with an Al(OH)3 phase over the magnetite cores, superparamagnetic with high saturation magnetization value (Ms = 63 emu/g-Fe3O4), and porous at the surface with a chemical affinity for fluoride ion adsorption. The suitability as MRI and PET contrast agents was tested showing high transversal relaxivity (r2) (83.6 mM-1 s-1) and rapid uptake of 18F-labeled fluoride ions as a PET tracer. The loading stability with 18F-fluoride was tested in longitudinal experiments using water, buffer, and cell culture media. Even though the stability of the 18F-label varied, it remained stable under all conditions. A first in vivo experiment indicates the suitability of Fe3O4@Al(OH)3 nanoparticles as a dual contrast agent for sensitive short-term (PET) and high-resolution long-term imaging (MRI).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA