Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(19): 193801, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000403

RESUMO

The periodic extension of phase difference is commonly applied in device design to obtain phase compensation beyond the system's original phase modulation capabilities. Based on this extension approach, we propose the application of quasiphase delay matching to extend the range of dispersion compensation for meta-atoms with limited height. Our theory expands the limit of frequency bandwidth coverage and relaxes the constraints of aperture, NA, and bandwidth for metalenses. By applying the uncertainty principle, we explain the fundamental limit of this achromatic bandwidth and obtain the achromatic spectrum using perturbation analysis. To demonstrate the effectiveness of this extended limit, we simulate a quasiachromatic metalens with a diameter of 2 mm and a NA of 0.55 in the range of 400-1500 nm. Our findings provide a novel theory for correcting chromatic aberration in large-diameter ultrawide bandwidth devices.

2.
Science ; 373(6555): 692-696, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353954

RESUMO

Incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend humans against intensifying global climate change. We show that large-scale woven metafabrics can provide high emissivity (94.5%) in the atmospheric window and high reflectivity (92.4%) in the solar spectrum because of the hierarchical-morphology design of the randomly dispersed scatterers throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics exhibit desirable mechanical strength, waterproofness, and breathability for commercial clothing while maintaining efficient radiative cooling ability. Practical application tests demonstrated that a human body covered by our metafabric could be cooled ~4.8°C lower than one covered by commercial cotton fabric. The cost-effectiveness and high performance of our metafabrics present substantial advantages for intelligent garments, smart textiles, and passive radiative cooling applications.

3.
Front Chem ; 8: 631870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520944

RESUMO

Semiconductor nanowires are one of the most fascinating topics over the past few decades. As miniaturized coherent light sources, semiconductor nanowires have been attracting tremendous attention in recent years for scientific and technological interest as potential ultra-compact, low cost, high efficiency, and low power consumption. Among different types of lasers, one-dimensional nanowires are of great interest as a promising material for next-generation nanophotonics and nanoelectronics applications due to their unique optical and electrical properties. Semiconductor nanowire lasers with single-mode output are vital in a variety of practical applications ranging from signal processing, spectroscopy, displays, optical sensing, on-chip communications, and biological studies. This article reviews the basic technology and research progress of single-mode semiconductor nanowire lasers. Afterward, the key methods and development of the different types of coupling to achieved single-mode laser output are elaborated. Finally, the challenges faced by each scheme are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA