Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World Neurosurg ; 183: e649-e657, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38181876

RESUMO

OBJECTIVE: Three-dimensional (3D) printed models are used in the medical field. This study aimed to evaluate the feasibility and safety of a 3D-printed guide plate for use in brain biopsy. METHODS: Twelve patients with intracranial lesions were retrospectively reviewed to determine clinical outcomes and technical procedural operability. These patients underwent brain biopsy assisted with the 3D-printed guide plate. Postoperative computed tomography was performed to assess the accuracy and associated complications of this guide plate. RESULTS: All patients received definite diagnoses assisted by this guide plate. The deviations of the entry and target points were 3.93 ± 0.96 mm and 2.59 ± 0.11 mm, respectively. The angle drift of the puncture path was 5.12° ± 0.14°, and the deviation of the puncture depth was 2.35 ± 1.13 mm. The operation time ranged from 38.5 minutes with local anesthesia to 76.2 minutes with general anesthesia. No patient experienced complications. CONCLUSIONS: The 3D-printed guide plate was noninvasive and had acceptable accuracy and the flexibility of frameless systems. The economic and operative benefits of this device supported its status as a powerful tool for brain biopsy in medical facilities in economically disadvantaged areas or institutions without navigation systems.


Assuntos
Encéfalo , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Biópsia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA