Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Virol ; 88(13): 7493-516, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741098

RESUMO

UNLABELLED: Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE: Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.


Assuntos
Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Vetores Genéticos/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/uso terapêutico , Replicação Viral , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Produtos do Gene gag/genética , Produtos do Gene nef/genética , Produtos do Gene vif/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Celular/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vacinação
2.
PLoS One ; 9(3): e92012, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651676

RESUMO

The enormous sequence diversity of HIV remains a major roadblock to the development of a prophylactic vaccine and new approaches to induce protective immunity are needed. Endogenous retrotransposable elements (ERE) such as endogenous retrovirus K (ERV)-K and long interspersed nuclear element-1 (LINE-1) are activated during HIV-1-infection and could represent stable, surrogate targets to eliminate HIV-1-infected cells. Here, we explored the hypothesis that vaccination against ERE would protect macaques from acquisition and replication of simian immunodeficiency virus (SIV). Following vaccination with antigens derived from LINE-1 and ERV-K consensus sequences, animals mounted immune responses that failed to delay acquisition of SIVsmE660. We observed no differences in acute or set point viral loads between ERE-vaccinated and control animals suggesting that ERE-specific responses were not protective. Indeed, ERE-specific T cells failed to expand anamnestically in vivo following infection with SIVsmE660 and did not recognize SIV-infected targets in vitro, in agreement with no significant induction of targeted ERE mRNA by SIV in macaque CD4+ T cells. Instead, lower infection rates and viral loads correlated significantly to protective TRIM5α alleles. Cumulatively, these data demonstrate that vaccination against the selected ERE consensus sequences in macaques did not lead to immune-mediated recognition and killing of SIV-infected cells, as has been shown for HIV-infected human cells using patient-derived HERV-K-specific T cells. Thus, further research is required to identify the specific nonhuman primate EREs and retroviruses that recapitulate the activity of HIV-1 in human cells. These results also highlight the complexity in translating observations of the interplay between HIV-1 and human EREs to animal models.


Assuntos
Sequência Consenso , Macaca mulatta/imunologia , Retroelementos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Vacinação , Replicação Viral/fisiologia , Animais , Proliferação de Células , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Macaca mulatta/virologia , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Ubiquitina-Proteína Ligases
3.
PLoS One ; 8(5): e61383, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671565

RESUMO

CD8+ T Lymphocytes (CTL) can control AIDS virus replication. However, natural selection favoring viral variants that escape CTL recognition is a common feature of both simian immunodeficiency virus (SIV) infection of macaques and HIV infection of humans. Emerging data indicate that CTL directed against alternate reading frame (ARF)-derived epitopes (a.k.a. cryptic epitopes) are important components of the total virus-specific response in SIV and HIV infection but the contributions of these responses during the critical first several weeks of infection have not been determined. We used a focused deep sequencing approach to examine acute phase viral evolution in response to CTL targeting two polypeptides encoded by ARFs of SIVmac239 in SIV-infected rhesus macaques. We report high magnitude CTL responses as early as three weeks post-infection against epitopes within both ARFs, which both overlap the 5' end of the env gene. Further, mutations accumulated in the epitopes by three to four weeks post infection consistent with viral escape. Interestingly, these mutations largely maintained the primary amino acid sequence of the overlapping Envelope protein. Our data show that high frequency CTL target cryptic epitopes and exert selective pressure on SIV during the acute phase, underscoring the importance of these unique immune responses.


Assuntos
Antígenos Virais/genética , Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/genética , Reação de Fase Aguda , Sequência de Aminoácidos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Evolução Molecular , Evasão da Resposta Imune , Cinética , Macaca mulatta , Dados de Sequência Molecular , Fases de Leitura Aberta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
4.
PLoS One ; 8(1): e54434, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23336000

RESUMO

An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV). Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D) has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (r)YF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIV)mac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5) vectors resulted in robust expansion of SIV-specific CD8(+) T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+) cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D-based vaccine regimens to ensure maximum delivery of all immunogens in a multivalent vaccine.


Assuntos
Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene vif/imunologia , Vetores Genéticos/genética , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vírus da Febre Amarela/genética , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Ordem dos Genes , Produtos do Gene gag/genética , Produtos do Gene nef/genética , Produtos do Gene vif/genética , Humanos , Imunização , Imunização Secundária , Cinética , Macaca mulatta , Masculino , Linfócitos T/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Replicação Viral
5.
Proc Natl Acad Sci U S A ; 109(46): 18921-5, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23100539

RESUMO

Most animal studies using passive administration of HIV broadly neutralizing monoclonal antibodies (bnMAbs) have associated protection against high-dose mucosal viral challenge with relatively high serum concentrations of antibody. We recently identified several bnMAbs remarkable for their in vitro potency against HIV. Of these bnMAbs, PGT121 is one of the most broad and potent antibodies isolated to date and shows 10- to 100-fold higher neutralizing activity than previously characterized bnMAbs. To evaluate the protective potency of PGT121 in vivo, we performed a protection study in rhesus macaques. Animals were i.v. administered 5 mg/kg, 1 mg/kg, or 0.2 mg/kg PGT121 24 h before being vaginally challenged with a single high dose of chimeric simian-human immunodeficiency virus (SHIV)(SF162P3). Sterilizing immunity was achieved in all animals administered 5 mg/kg and 1 mg/kg and three of five animals administered 0.2 mg/kg PGT121, with corresponding average antibody serum concentrations of 95 µg/mL, 15 µg/mL, and 1.8 µg/mL, respectively. The results suggest that a protective serum concentration for PGT121 is in the single-digit µg/mL for SHIV(SF162P3), showing that PGT121 can mediate sterilizing immunity at serum concentrations that are significantly lower than those observed in previous studies and that may be achievable through vaccination with the development of a suitable immunogen.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Imunização Passiva , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Macaca mulatta
6.
Nature ; 491(7422): 129-33, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23023123

RESUMO

Developing a vaccine for human immunodeficiency virus (HIV) may be aided by a complete understanding of those rare cases in which some HIV-infected individuals control replication of the virus. Most of these elite controllers express the histocompatibility alleles HLA-B*57 or HLA-B*27 (ref. 3). These alleles remain by far the most robust associations with low concentrations of plasma virus, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinate Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control, with three Mamu-B*08-restricted CD8(+) T-cell epitopes, and demonstrate that these vaccinated animals control replication of the highly pathogenic clonal simian immunodeficiency virus (SIV) mac239 virus. High frequencies of CD8(+) T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon were associated with viral control. Moreover, the frequency of the CD8(+) T-cell response against the Nef RL10 epitope (Nef amino acids 137-146) correlated significantly with reduced acute phase viraemia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8(+) T-cell responses in the control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8(+) T-cell responses can control replication of the AIDS virus.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/virologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , HIV-1/imunologia , Antígeno HLA-B27/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Viremia/imunologia , Viremia/prevenção & controle
7.
J Immunol ; 189(3): 1467-79, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22745376

RESUMO

The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Elementos de DNA Transponíveis/imunologia , Retrovirus Endógenos/imunologia , Vacinas contra a AIDS/genética , Adulto , Sequência de Aminoácidos , Animais , Vacinas Anticâncer/genética , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
8.
Vaccine ; 30(30): 4465-75, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22569124

RESUMO

It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8(+) (2-7 pool-specific responses) and CD4(+) (5-19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with naïve controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to naïve controls. Post-infection we observed an average of only two anamnestic CD8(+) T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/patogenicidade , Replicação Viral , Adenoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene pol/imunologia , Imunidade Celular , Interferon gama/imunologia , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
9.
Immunogenetics ; 64(2): 111-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21881953

RESUMO

Every year, Dengue virus (DENV) infects approximately 100 million people. There are currently several vaccines undergoing clinical studies, but most target the induction of neutralizing antibodies. Unfortunately, DENV infection can be enhanced by subneutralizing levels of antibodies that bind virions and deliver them to cells of the myeloid lineage, thereby increasing viral replication (termed antibody-dependent enhancement [ADE]). T lymphocyte-based vaccines may offer an alternative that avoids ADE. The goal of our study was to describe the cellular immune response generated after primary DENV infection in Indian rhesus macaques. We infected eight rhesus macaques with 105 plaque-forming units (PFU) of DENV serotype 2 (DENV2) New Guinea C (NGC) strain, and monitored viral load and the cellular immune response to the virus. Viral replication peaked at day 4 post-infection and was resolved by day 10. DENV-specific CD4+ and CD8+ T lymphocytes targeted nonstructural (NS) 1, NS3 and NS5 proteins after resolution of peak viremia. DENV-specific CD4+ cells expressed interferon-gamma (IFN-γ) along with tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and macrophage inflammatory protein-1 beta (MIP-1ß). In comparison, DENV-specific CD8+ cells expressed IFN-γ in addition to MIP-1ß and TNF-α and were positive for the degranulation marker CD107a. Interestingly, a fraction of the DENV-specific CD4+ cells also stained for CD107a, suggesting that they might be cytotoxic. Our results provide a more complete understanding of the cellular immune response during DENV infection in rhesus macaques and contribute to the development of rhesus macaques as an animal model for DENV vaccine and pathogenicity studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Citocinas/biossíntese , Citocinas/imunologia , Dengue/virologia , Imunidade Celular , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Macaca mulatta , RNA Helicases/imunologia , Serina Endopeptidases/imunologia , Carga Viral , Replicação Viral/imunologia
10.
Immunogenetics ; 63(12): 789-807, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21732180

RESUMO

Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n = 63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500 nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T , Genes MHC Classe I/genética , Antígenos de Histocompatibilidade Classe I/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Alelos , Sequência de Aminoácidos , Animais , Epitopos de Linfócito T/análise , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/análise , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama , Macaca mulatta , Ligação Proteica , RNA Viral/sangue , RNA Viral/genética , Análise de Sequência de Proteína , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T Citotóxicos/imunologia , Carga Viral , Vacinas Virais
11.
Immunogenetics ; 63(9): 587-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21626440

RESUMO

The presentation of identical peptides by different major histocompatibility complex class I (MHC-I) molecules, termed promiscuity, is a controversial feature of T cell-mediated immunity to pathogens. The astounding diversity of MHC-I molecules in human populations, presumably to enable binding of equally diverse peptides, implies promiscuity would be a rare phenomenon. However, if it occurs, it would have important implications for immunity. We screened 77 animals for responses to peptides known to bind MHC-I molecules that were not expressed by these animals. Some cases of supposed promiscuity were determined to be the result of either non-identical optimal peptides or were simply not mapped to the correct MHC-I molecule in previous studies. Cases of promiscuity, however, were associated with alterations of immunodominance hierarchies, either in terms of the repertoire of peptides presented by the different MHC-I molecules or in the magnitude of the responses directed against the epitopes themselves. Specifically, we found that the Mamu-B*017:01-restricted peptides Vif HW8 and cRW9 were also presented by Mamu-A2*05:26 and targeted by an animal expressing that allele. We also found that the normally subdominant Mamu-A1*001:01 presented peptide Gag QI9 was also presented by Mamu-B*056:01. Both A2*05:26 and B*056:01 are molecules typically or exclusively expressed by animals of Chinese origin. These data clearly demonstrate that MHC-I epitope promiscuity, though rare, might have important implications for immunodominance and for the transmission of escape mutations, depending on the relative frequencies of the given alleles in a population.


Assuntos
Genes MHC Classe I/imunologia , Epitopos Imunodominantes/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , China , Antígenos de Histocompatibilidade Classe I/imunologia , Índia , Dados de Sequência Molecular
12.
J Virol ; 85(1): 530-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962091

RESUMO

Human immunodeficiency virus (HIV)-positive individuals can be superinfected with different virus strains. Individuals who control an initial HIV infection are therefore still at risk for subsequent infection with divergent viruses, but the barriers to such superinfection remain unclear. Here we tested long-term nonprogressors' (LTNPs') susceptibility to superinfection using Indian rhesus macaques that express the major histocompatibility complex class I (MHC-I) allele Mamu-B 17, which is associated with control of the pathogenic AIDS virus SIVmac239. The Mamu-B 17-restricted CD8(+) T cell repertoire is focused almost entirely on 5 epitopes. We engineered a series of SIVmac239 variants bearing mutations in 3, 4, or all 5 of these epitopes and used them to serially challenge 2 Mamu-B 17-positive LTNPs. None of the escape variants caused breakthrough replication in LTNPs, although they readily infected Mamu-B 17-negative naive macaques. In vitro competing coculture assays and examination of viral evolution in hosts lacking Mamu-B 17 suggested that the mutant viruses had negligible defects in replicative fitness. Both LTNPs maintained robust immune responses, including simian immunodeficiency virus (SIV)-specific CD8(+) and CD4(+) T cells and neutralizing antibodies. Our results suggest that escape mutations in epitopes bound by "protective" MHC-I molecules may not be sufficient to establish superinfection in LTNPs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Sobreviventes de Longo Prazo ao HIV , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Superinfecção/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Macaca mulatta/virologia , Dados de Sequência Molecular , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Superinfecção/virologia
13.
Cytometry A ; 77(11): 1059-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20722008

RESUMO

Deciphering the complex interactions between human and simian immunodeficiency viruses (HIV/SIV) and their host cells is crucial to the development of improved therapies and vaccines. Investigating these relationships has been complicated by the inability to directly analyze infected cells among freshly isolated peripheral blood lymphocytes. Here, we describe a method to detect cells productively infected with SIVmac239 ex vivo from the blood or lymph nodes by flow cytometry. Using this method, we show a close correlation between the frequency of productively infected cells in both sample type and the plasma viral load. We define that the minimum threshold for detecting productively infected cells in lymph nodes by flow cytometry requires a plasma virus concentration of ∼2.5 × 10(4) vRNA copy Equivalents (Eq)/ml. Conversely, an approximately 2 logs higher plasma viral load is needed to detect productively infected cells in the peripheral blood. This novel protocol provides a direct analytical tool to assess interactions between SIV and host cells, which is of key importance to investigators in AIDS research.


Assuntos
Citometria de Fluxo/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Separação Celular , Interações Hospedeiro-Patógeno/fisiologia , Limite de Detecção , Linfonodos/patologia , Linfonodos/virologia , Linfócitos/patologia , Linfócitos/virologia , Macaca mulatta , RNA Viral/análise , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Vírus da Imunodeficiência Símia/genética , Carga Viral
14.
J Virol ; 84(21): 11569-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739530

RESUMO

Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Animais , HIV , Macaca mulatta , Vírus da Imunodeficiência Símia
15.
J Virol ; 84(18): 9190-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592091

RESUMO

An effective human immunodeficiency virus (HIV) vaccine will likely need to reduce mucosal transmission and, if infection occurs, control virus replication. To determine whether our best simian immunodeficiency virus (SIV) vaccine can achieve these lofty goals, we vaccinated eight Indian rhesus macaques with SIVmac239Delta nef and challenged them intrarectally (i.r.) with repeated low doses of the pathogenic heterologous swarm isolate SIVsmE660. We detected a significant reduction in acquisition of SIVsmE660 in comparison to that for naïve controls (log rank test; P = 0.023). After 10 mucosal challenges, we detected replication of the challenge strain in only five of the eight vaccinated animals. In contrast, seven of the eight control animals became infected with SIVsmE660 after these 10 challenges. Additionally, the SIVsmE660-infected vaccinated animals controlled peak acute virus replication significantly better than did the naïve controls (Mann-Whitney U test; P = 0.038). Four of the five SIVsmE660 vaccinees rapidly brought virus replication under control by week 4 postinfection. Unfortunately, two of these four vaccinated animals lost control of virus replication during the chronic phase of infection. Bulk sequence analysis of the circulating viruses in these animals indicated that recombination had occurred between the vaccine and challenge strains and likely contributed to the increased virus replication in these animals. Overall, our results suggest that a well-designed HIV vaccine might both reduce the rate of acquisition and control viral replication.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Macaca mulatta , Recombinação Genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Resultado do Tratamento , Carga Viral , Viremia/imunologia , Viremia/prevenção & controle
16.
PLoS One ; 5(7): e11436, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20625436

RESUMO

BACKGROUND: HIV-1-infected individuals who spontaneously control viral replication represent an example of successful containment of the AIDS virus. Understanding the anti-viral immune responses in these individuals may help in vaccine design. However, immune responses against HIV-1 are normally analyzed using HIV-1 consensus B 15-mers that overlap by 11 amino acids. Unfortunately, this method may underestimate the real breadth of the cellular immune responses against the autologous sequence of the infecting virus. METHODOLOGY AND PRINCIPAL FINDINGS: Here we compared cellular immune responses against nef and vif-encoded consensus B 15-mer peptides to responses against HLA class I-predicted minimal optimal epitopes from consensus B and autologous sequences in six patients who have controlled HIV-1 replication. Interestingly, our analysis revealed that three of our patients had broader cellular immune responses against HLA class I-predicted minimal optimal epitopes from either autologous viruses or from the HIV-1 consensus B sequence, when compared to responses against the 15-mer HIV-1 type B consensus peptides. CONCLUSION AND SIGNIFICANCE: This suggests that the cellular immune responses against HIV-1 in controller patients may be broader than we had previously anticipated.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , Imunidade Celular/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/imunologia , Linfócitos T CD4-Positivos , Estudos de Coortes , Epitopos/genética , Epitopos/imunologia , Variação Genética/genética , Genoma Viral/genética , HIV-1/classificação , HIV-1/genética , HIV-1/imunologia , Antígenos HLA-B/genética , Imunidade Celular/genética , Funções Verossimilhança , Filogenia , Reação em Cadeia da Polimerase
17.
Immunogenetics ; 62(9): 593-600, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20607226

RESUMO

The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.


Assuntos
Linfócitos T Citotóxicos/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/imunologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Animais , Desenho de Fármacos , Macaca mulatta , Fragmentos de Peptídeos/imunologia , RNA Helicases/imunologia , Serina Endopeptidases/imunologia , Vacinação , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Febre Amarela/imunologia
18.
J Virol ; 84(10): 5443-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20219903

RESUMO

Human and simian immunodeficiency viruses (HIV and SIV) downregulate major histocompatibility complex class I (MHC-I) molecules from the surface of infected cells. Although this activity is conserved across viral isolates, its importance in AIDS pathogenesis is not clear. We therefore developed an assay to detect the level of MHC-I expression of SIV-infected cells directly ex vivo. Here we show that the extent of MHC-I downregulation is greatest in SIVmac239-infected macaques that never effectively control virus replication. Our results suggest that a high level of MHC-I downregulation is a hallmark of fast disease progression in SIV infection.


Assuntos
Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/biossíntese , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Viremia , Animais , Macaca mulatta , Virulência
19.
J Virol ; 84(7): 3699-706, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089645

RESUMO

Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Febre Amarela/genética , Animais , Linfócitos T CD4-Positivos/virologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Macaca mulatta , Fragmentos de Peptídeos/imunologia , Vacinas Sintéticas/imunologia , Vacina contra Febre Amarela/imunologia
20.
J Immunol ; 184(1): 67-72, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949108

RESUMO

Rational vaccines designed to engender T cell responses require intimate knowledge of how epitopes are generated and presented. Recently, we vaccinated 8 Mamu-A*02(+) rhesus macaques with every SIV protein except Envelope (Env). Surprisingly, one of the strongest T cell responses engendered was against the Env protein, the Mamu-A*02-restricted epitope, Env(788-795)RY8. In this paper, we show that translation from an alternate reading frame of both the Rev-encoding DNA plasmid and the rAd5 vector engendered Env(788-795)RY8-specific CD8(+) T cells of greater magnitude than "normal" SIV infection. Our data demonstrate both that the pathway from vaccination to immune response is not well understood and that products of alternate reading frames may be rich and untapped sources of T cell epitopes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Fases de Leitura/genética , Vacinas contra a SAIDS/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Epitopos de Linfócito T/genética , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Macaca mulatta , Dados de Sequência Molecular , Fases de Leitura/imunologia , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/imunologia , Transfecção , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA