Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559194

RESUMO

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

2.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502750

RESUMO

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , Comunicação , Expressão Gênica , Genoma , Camundongos , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética
3.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759823

RESUMO

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Assuntos
Sequência Conservada/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Animais , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Camundongos , Regiões Promotoras Genéticas/genética , RNA Antissenso/genética , Elementos Silenciadores Transcricionais/genética , Transcrição Gênica/genética
4.
EMBO Rep ; 20(10): e48019, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31456285

RESUMO

Xist RNA has been established as the master regulator of X-chromosome inactivation (XCI) in female eutherian mammals, but its mechanism of action remains unclear. By creating novel Xist-inducible mutants at the endogenous locus in male mouse embryonic stem (ES) cells, we dissect the role of the conserved A-B-C-F repeats in the initiation of XCI. We find that transcriptional silencing can be largely uncoupled from Polycomb repressive complex 1 and complex 2 (PRC1/2) recruitment, which requires B and C repeats. Xist ΔB+C RNA specifically loses interaction with PCGF3/5 subunits of PRC1, while binding of other Xist partners is largely unaffected. However, a slight relaxation of transcriptional silencing in Xist ΔB+C indicates a role for PRC1/2 proteins in early stabilization of gene repression. Distinct modules within the Xist RNA are therefore involved in the convergence of independent chromatin modification and gene repression pathways. In this context, Polycomb recruitment seems to be of moderate relevance in the initiation of silencing.


Assuntos
Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X/genética , Animais , Feminino , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Genéticos , Mutação/genética , Mapas de Interação de Proteínas , Sequências Repetitivas de Ácido Nucleico/genética , Transcrição Gênica , Cromossomo X/genética
5.
Genome Res ; 29(7): 1087-1099, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175153

RESUMO

To initiate X-Chromosome inactivation (XCI), the long noncoding RNA Xist mediates chromosome-wide gene silencing of one X Chromosome in female mammals to equalize gene dosage between the sexes. The efficiency of gene silencing is highly variable across genes, with some genes even escaping XCI in somatic cells. A gene's susceptibility to Xist-mediated silencing appears to be determined by a complex interplay of epigenetic and genomic features; however, the underlying rules remain poorly understood. We have quantified chromosome-wide gene silencing kinetics at the level of the nascent transcriptome using allele-specific Precision nuclear Run-On sequencing (PRO-seq). We have developed a Random Forest machine-learning model that can predict the measured silencing dynamics based on a large set of epigenetic and genomic features and tested its predictive power experimentally. The genomic distance to the Xist locus, followed by gene density and distance to LINE elements, are the prime determinants of the speed of gene silencing. Moreover, we find two distinct gene classes associated with different silencing pathways: a class that requires Xist-repeat A for silencing, which is known to activate the SPEN pathway, and a second class in which genes are premarked by Polycomb complexes and tend to rely on the B repeat in Xist for silencing, known to recruit Polycomb complexes during XCI. Moreover, a series of features associated with active transcriptional elongation and chromatin 3D structure are enriched at rapidly silenced genes. Our machine-learning approach can thus uncover the complex combinatorial rules underlying gene silencing during X inactivation.


Assuntos
Epigênese Genética , Inativação Gênica , Aprendizado de Máquina , RNA Longo não Codificante/fisiologia , Inativação do Cromossomo X/genética , Animais , Linhagem Celular , Células-Tronco Embrionárias , Feminino , Genes Ligados ao Cromossomo X , Genoma , Cinética , Camundongos , Modelos Genéticos
6.
Nat Genet ; 51(6): 1024-1034, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133748

RESUMO

The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other's TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically upregulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Animais , Diferenciação Celular/genética , Expressão Ectópica do Gene , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Inativação Gênica , Loci Gênicos , Masculino , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Inversão de Sequência , Transcrição Gênica
7.
Nat Commun ; 8(1): 1297, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101321

RESUMO

X-chromosome inactivation is established during early development. In mice, transcriptional repression of the paternal X-chromosome (Xp) and enrichment in epigenetic marks such as H3K27me3 is achieved by the early blastocyst stage. X-chromosome inactivation is then reversed in the inner cell mass. The mechanisms underlying Xp reactivation remain enigmatic. Using in vivo single-cell approaches (allele-specific RNAseq, nascent RNA-fluorescent in situ hybridization and immunofluorescence), we show here that different genes are reactivated at different stages, with more slowly reactivated genes tending to be enriched in H3meK27. We further show that in UTX H3K27 histone demethylase mutant embryos, these genes are even more slowly reactivated, suggesting that these genes carry an epigenetic memory that may be actively lost. On the other hand, expression of rapidly reactivated genes may be driven by transcription factors. Thus, some X-linked genes have minimal epigenetic memory in the inner cell mass, whereas others may require active erasure of chromatin marks.


Assuntos
Massa Celular Interna do Blastocisto/metabolismo , Epigênese Genética , Fatores de Transcrição/farmacocinética , Inativação do Cromossomo X/genética , Animais , Feminino , Genes Ligados ao Cromossomo X , Histonas/metabolismo , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Genéticos , Gravidez , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Análise de Célula Única
8.
Nat Struct Mol Biol ; 24(3): 226-233, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28134930

RESUMO

The long noncoding RNA Xist is expressed from only the paternal X chromosome in mouse preimplantation female embryos and mediates transcriptional silencing of that chromosome. In females, absence of Xist leads to postimplantation lethality. Here, through single-cell RNA sequencing of early preimplantation mouse embryos, we found that the initiation of imprinted X-chromosome inactivation absolutely requires Xist. Lack of paternal Xist leads to genome-wide transcriptional misregulation in the early blastocyst and to failure to activate the extraembryonic pathway that is essential for postimplantation development. We also demonstrate that the expression dynamics of X-linked genes depends on the strain and parent of origin as well as on the location along the X chromosome, particularly at the first 'entry' sites of Xist. This study demonstrates that dosage-compensation failure has an effect as early as the blastocyst stage and reveals genetic and epigenetic contributions to orchestrating transcriptional silencing of the X chromosome during early embryogenesis.


Assuntos
Desenvolvimento Embrionário/genética , Impressão Genômica , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Alelos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/genética , Mecanismo Genético de Compensação de Dose , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Inativação Gênica , Genes Ligados ao Cromossomo X , Cinética , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Tempo , Cromossomo X/genética
9.
Cell Stem Cell ; 14(2): 203-16, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24506884

RESUMO

During early development of female mouse embryos, both X chromosomes are transiently active. X gene dosage is then equalized between the sexes through the process of X chromosome inactivation (XCI). Whether the double dose of X-linked genes in females compared with males leads to sex-specific developmental differences has remained unclear. Using embryonic stem cells with distinct sex chromosome compositions as a model system, we show that two X chromosomes stabilize the naive pluripotent state by inhibiting MAPK and Gsk3 signaling and stimulating the Akt pathway. Since MAPK signaling is required to exit the pluripotent state, differentiation is paused in female cells as long as both X chromosomes are active. By preventing XCI or triggering it precociously, we demonstrate that this differentiation block is released once XX cells have undergone X inactivation. We propose that double X dosage interferes with differentiation, thus ensuring a tight coupling between X chromosome dosage compensation and development.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Cromossomo X/genética , Animais , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Mecanismo Genético de Compensação de Dose , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Inativação do Cromossomo X/genética , DNA Metiltransferase 3B
10.
Mol Cell ; 53(2): 301-16, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462204

RESUMO

During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate that the PRC2 cofactor Jarid2 is an important mediator of Xist-induced PRC2 targeting. The region containing the conserved B and F repeats of Xist is critical for Jarid2 recruitment via its unique N-terminal domain. Xist-induced Jarid2 recruitment occurs chromosome-wide independently of a functional PRC2 complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/fisiologia , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Mecanismo Genético de Compensação de Dose , Humanos , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/fisiologia , RNA Longo não Codificante/metabolismo
11.
Biol Open ; 1(7): 648-57, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213458

RESUMO

Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

12.
PLoS Pathog ; 8(8): e1002852, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912575

RESUMO

Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called "Single" and "Multiple", which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. "Single" and "Multiple" patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the "Multiple" pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction.


Assuntos
Centrômero/metabolismo , Loci Gênicos/fisiologia , Genoma Viral/fisiologia , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Latência Viral/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Centrômero/genética , Proteínas Correpressoras , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Herpes Simples/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Coelhos , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteína Nuclear Ligada ao X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA