Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Harmful Algae ; 131: 102563, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38212085

RESUMO

Cyanobacterial blooms are one of the most significant threats to global water security and freshwater biodiversity. Interactions among multiple stressors, including habitat degradation, species invasions, increased nutrient runoff, and climate change, are key drivers. However, assessing the role of anthropogenic activity on the onset of cyanobacterial blooms and exploring response variation amongst lakes of varying size and depth is usually limited by lack of historical records. In the present study we applied molecular, paleolimnological (trace metal, Itrax-µ-XRF and hyperspectral scanning, chronology), paleobotanical (pollen) and historical data to reconstruct cyanobacterial abundance and community composition and anthropogenic impacts in two dune lakes over a period of up to 1200 years. Metabarcoding and droplet digital PCR results showed very low levels of picocyanobacteria present in the lakes prior to about CE 1854 (1839-1870 CE) in the smaller shallow Lake Alice and CE 1970 (1963-1875 CE) in the larger deeper Lake Wiritoa. Hereafter bloom-forming cyanobacteria were detected and increased notably in abundance post CE 1984 (1982-1985 CE) in Lake Alice and CE 1997 (1990-2007 CE) in Lake Wiritoa. Currently, the magnitude of blooms is more pronounced in Lake Wiritoa, potentially attributable to hypoxia-induced release of phosphorus from sediment, introducing an additional source of nutrients. Generalized linear modelling was used to investigate the contribution of nutrients (proxy = bacterial functions), temperature, redox conditions (Mn:Fe), and erosion (Ti:Inc) in driving the abundance of cyanobacteria (ddPCR). In Lake Alice nutrients and erosion had a statistically significant effect, while in Lake Wiritoa nutrients and redox conditions were significant.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Cianobactérias/fisiologia , Fósforo/análise , Ecossistema , Biodiversidade
2.
PeerJ ; 11: e15210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151294

RESUMO

Non-native fish have been shown to have deleterious impacts on freshwater ecosystems in New Zealand. Early detection is critical for their effective management. Traditional capture-based techniques may not detect newly introduced fish, especially if they are present in low abundance. Molecular techniques that target environmental DNA (eDNA) have been shown, in many instances, to be more sensitive, cost-effective and require lower sampling effort. However, appropriate sampling strategies are needed to ensure robust and interpretable data are obtained. In this study we used droplet digital PCR assays to investigate the presence of two non-native fish in New Zealand, the European perch (Perca fluviatilis) and rudd (Scardinius erythrophthalmus) in three small lakes. Samples were collected from water and surface sediment at near-shore and mid-lake sites. Probabilistic modelling was used to assess the occupancy of fish eDNA and develop guidance on sampling strategies. Based on the detection probability measures from the present study, at least six sites and five replicates per site are needed to reliably detect fish eDNA in sediment samples, and twelve sites with eight replicates per site for water samples. The results highlight the potential of developing monitoring and surveillance programs adapted to lakes, that include the use of assays targeting eDNA. This study focused on small shallow lakes, and it is likely that these recommendations may vary in larger, deeper, and more geomorphologically complex lakes, and this requires further research.


Assuntos
DNA Ambiental , Percas , Animais , Lagos , DNA Ambiental/genética , Ecossistema , Percas/genética , Água
3.
Sci Rep ; 12(1): 12810, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896561

RESUMO

The frequency and intensity of cyanobacterial blooms is increasing worldwide. Multiple factors are implicated, most of which are anthropogenic. New Zealand provides a useful location to study the impacts of human settlement on lake ecosystems. The first humans (Polynesians) arrived about 750 years ago. Following their settlement, there were marked landscape modifications which intensified after European settlement about 150 years ago. The aims of this study were to reconstruct cyanobacterial communities in six lakes over the last 1000 years and explore key drivers of change. Cyanobacterial environmental DNA was extracted from sediment cores and analysed using metabarcoding and droplet digital PCR. Cyanobacteria, including potentially toxic or bloom forming species, were already present in these lakes prior to human arrival, however their overall abundance was low. Total cyanobacteria abundance and richness increased in all lakes after European settlement but was very pronounced in four lakes, where bloom-forming taxa became dominant. These shifts occurred concomitant with land-use change. The catchment of one deteriorated lake is only moderately modified, thus the introduction of non-native fish is posited as the key factor driving this change. The paleolimnological approach used in this study has enabled new insights into timing and potential causes of changes in cyanobacterial communities.


Assuntos
Cianobactérias , Lagos , Animais , Cianobactérias/genética , Ecossistema , Eutrofização , Humanos , Lagos/microbiologia , Nova Zelândia , Reação em Cadeia da Polimerase
4.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208733

RESUMO

Understanding the historical onset of cyanobacterial blooms in freshwater bodies can help identify their potential drivers. Lake sediments are historical archives, containing information on what has occurred in and around lakes over time. Paleolimnology explores these records using a variety of techniques, but choosing the most appropriate method can be challenging. We compared results obtained from a droplet digital PCR assay targeting a cyanobacterial-specific region of the 16S rRNA gene in sedimentary DNA and cyanobacterial pigments (canthaxanthin, echinenone, myxoxanthophyll and zeaxanthin) analysed using high-performance liquid chromatography in four sediment cores. There were strong positive relationships between the 16S rRNA gene copy concentrations and individual pigment concentrations, but relationships differed among lakes and sediment core depths within lakes. The relationships were more consistent when all pigments were summed, which we attribute to different cyanobacteria species, in different lakes, at different times producing different suites of pigments. Each method had benefits and limitations, which should be taken into consideration during method selection and when interpreting paleolimnological data. We recommend this biphasic approach when making inferences about changes in the entire cyanobacterial community because they yielded complementary information. Our results support the view that molecular methods can yield results similar to traditional paleolimnological proxies when caveats are adequately addressed.

5.
Sci Total Environ ; 812: 152385, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942258

RESUMO

Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.


Assuntos
Bactérias , Lagos , Bactérias/genética , Sedimentos Geológicos , Humanos , Nova Zelândia , RNA Ribossômico 16S
6.
Environ Pollut ; 246: 827-836, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623839

RESUMO

Harmful algal blooms are a threat to aquatic organisms and coastal ecosystems. Among harmful species, the widespread distributed genus Alexandrium is of global importance. This genus is well-known for the synthesis of paralytic shellfish toxins which are toxic for humans through the consumption of contaminated shellfish. While the effects of Alexandrium species upon the physiology of bivalves are now well documented, consequences on reproduction remain poorly studied. In France, Alexandrium minutum blooms have been recurrent for the last decades, generally appearing during the reproduction season of most bivalves including the oyster Crassostrea gigas. These blooms could not only affect gametogenesis but also spawning, larval development or juvenile recruitment. This study assesses the effect of toxic A. minutum blooms on C. gigas reproduction. Adult oysters were experimentally exposed to A. minutum, at environmentally realistic concentrations (102 to 103 cells mL-1) for two months during their gametogenesis and a control group, not exposed to A. minutum was fed with a non-toxic dinoflagellate. To determine both consequences to next generation and direct effects of A. minutum exposure on larvae, the embryo-larval development of subsequent offspring was conducted with and without A. minutum exposure at 102 cells mL-1. Effects at each stage of the reproduction were investigated on ecophysiological parameters, cellular responses, and offspring development. Broodstock exposed to A. minutum produced spermatozoa with decreased motility and larvae of smaller size which showed higher mortalities during settlement. Embryo-larval exposure to A. minutum significantly reduced growth and settlement of larvae compared to non-exposed offspring. This detrimental consequence on larval growth was stronger in larvae derived from control parents compared to offspring from exposed parents. This study provides evidence that A. minutum blooms, whether they occur during gametogenesis, spawning or larval development, can either affect gamete quality and/or larval development of C. gigas, thus potentially impacting oyster recruitment.


Assuntos
Crassostrea/efeitos dos fármacos , Crassostrea/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Exposição Ambiental/efeitos adversos , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Animais , França
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA