Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990945

RESUMO

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Assuntos
Movimento Celular , Amplificação de Genes , Proteínas Proto-Oncogênicas c-myc , Estresse Mecânico , Humanos , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Camundongos , Mitose/genética , Instabilidade Cromossômica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
2.
Cell Chem Biol ; 31(7): 1247-1263.e16, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537632

RESUMO

This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Proliferação de Células , Ensaios de Triagem em Larga Escala , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Sinalização YAP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Linhagem Celular Tumoral , Fosfoproteínas/metabolismo , Fosfoproteínas/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Descoberta de Drogas , Camundongos Nus , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Fenótipo , Relação Estrutura-Atividade , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
3.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
4.
Nat Cancer ; 4(1): 9-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564601

RESUMO

Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Mecanotransdução Celular , Neoplasias/terapia , Microambiente Tumoral
6.
Nature ; 607(7920): 790-798, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768505

RESUMO

Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.


Assuntos
Envelhecimento , Proteínas de Membrana , Nucleotidiltransferases , Células Estromais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Proteína 2 Relacionada a Actina/metabolismo , Envelhecimento/metabolismo , Senescência Celular , Matriz Extracelular , Envelhecimento Saudável , Imunidade Inata , Lamina Tipo B/metabolismo , Mecanotransdução Celular/genética , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/antagonistas & inibidores , Proteínas de Sinalização YAP/metabolismo
7.
Nat Metab ; 4(6): 672-682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35726026

RESUMO

Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are instructed by Yes-associated protein 1 (YAP)/WW domain-containing transcription regulator 1 (WWTR1/TAZ)-transcriptional enhanced associate domain (TEAD): a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2 and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fuelling nutrient-dependent mTORC1 signalling. By orchestrating the transcription of a repertoire of cell-surface transporters, including the large neutral amino acid transporter SLC7A5, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 activation. Dissociating mTORC1 from these nutrient inputs-elicited by the loss of Rag GTPases-inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. Together, these findings define a pivotal role for YAP/TAZ-TEAD in controlling endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.


Assuntos
Células Endoteliais , Transativadores , Aciltransferases/metabolismo , Animais , Células Endoteliais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Nutrientes , Fatores de Transcrição de Domínio TEA/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP/metabolismo
8.
Dev Biol ; 488: 54-67, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580730

RESUMO

Myriads forces are at play during morphogenesis. Their concerted activity shapes individual cells, tissues and the whole embryo, representing the most awe-inspiring marvel of developmental biology. In spite of their prevalence, the potential instructive role of cell mechanics in fate determination and patterning has remained long neglected, in part due to the difficulties in translating the physical world of cells in molecular terms. The recent discovery of the principles of mechanotransduction, of how these impact on gene expression, is however starting to change this scenario, making mechanotransduction finally amenable to experimental dissection through genetics, molecular and bioengineering approaches. Here we review this emerging field, and a series of discoveries that potently bring back cell mechanics at the centerstage of vertebrate developmental biology. We discuss the role of actomyosin contractility as integrating platform between morphogens, lateral inhibition and mechanosignaling. We also review data indicating that supracellular pulling forces, coupled with solid-to-fluid changes in the material contexture of embryonic fields, may act as overarching mechanical "organizers". The evidence also indicates that a continuum of forces is what ultimately locks "self-organizing" movements with cell fate, from the earliest pre-implantation decisions to the fine details of organogenesis. Notably, similar mechanisms are reawakened in organoids and in adult tissues during regeneration. Developmental biology has been correctly depicted, but recently often forgotten, as the "mother" of all biological disciplines. Investigations in developmental mechanics may revamp interest, and have a broad impact in the fields of regenerative medicine, stem cells and cancer biology.


Assuntos
Mecanotransdução Celular , Organogênese , Actomiosina , Animais , Desenvolvimento Embrionário , Morfogênese , Vertebrados
9.
Adv Healthc Mater ; 11(3): e2102276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825526

RESUMO

Mechanical signals are pivotal ingredients in how cells perceive and respond to their microenvironments, and to synthetic biomaterials that mimic them. In spite of increasing interest in mechanobiology, probing the effects of physical cues on cell behavior remains challenging for a cell biology laboratory without experience in fabrication of biocompatible materials. Hydrogels are ideal biomaterials recapitulating the physical cues that natural extracellular matrices (ECM) deliver to cells. Here, protocols are streamlined for the synthesis and functionalization of cell adhesive polyacrylamide-based (PAA-OH) and fully-defined polyethyleneglycol-based (PEG-RGD) hydrogels tuned at various rigidities for mechanobiology experiments, from 0.3 to >10 kPa.  The mechanosignaling properties of these hydrogels are investigated in distinct cell types by monitoring the activation state of YAP/TAZ. By independently modulating substrate stiffness and adhesiveness, it is found that although ECM stiffness represents an overarching mechanical signal, the density of adhesive sites does impact on cellular mechanosignaling at least at intermediate rigidity values, corresponding to normal and pathological states of living tissues. Using these tools, it is found that YAP/TAZ nuclear accumulation occurs when the projected area of the nucleus surpasses a critical threshold of approximatively 150 µm2 . This work suggests the existence of distinct checkpoints for cellular mechanosensing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Hidrogéis , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesividade , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Hidrogéis/química , Mecanotransdução Celular/fisiologia
10.
Cell Death Differ ; 29(3): 614-626, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845371

RESUMO

High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.


Assuntos
Ascite , Neoplasias Ovarianas , Ascite/genética , Ascite/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Medicina de Precisão , Esferoides Celulares/patologia
11.
Sci Rep ; 11(1): 22668, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811382

RESUMO

In spite of tremendous advances made in the comprehension of mechanotransduction, implementation of mechanobiology assays remains challenging for the broad community of cell biologists. Hydrogel substrates with tunable stiffness are essential tool in mechanobiology, allowing to investigate the effects of mechanical signals on cell behavior. A bottleneck that slows down the popularization of hydrogel formulations for mechanobiology is the assessment of their stiffness, typically requiring expensive and sophisticated methodologies in the domain of material science. Here we overcome such barriers offering the reader protocols to set-up and interpret two straightforward, low cost and high-throughput tools to measure hydrogel stiffness: static macroindentation and micropipette aspiration. We advanced on how to build up these tools and on the underlying theoretical modeling. Specifically, we validated our tools by comparing them with leading techniques used for measuring hydrogel stiffness (atomic force microscopy, uniaxial compression and rheometric analysis) with consistent results on PAA hydrogels or their modification. In so doing, we also took advantage of YAP/TAZ nuclear localization as biologically validated and sensitive readers of mechanosensing, all in all presenting a suite of biologically and theoretically proven protocols to be implemented in most biological laboratories to approach mechanobiology.

12.
Cell Stress ; 5(11): 167-172, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34782888

RESUMO

Dysregulated gene expression is intrinsic to cell transformation, tumorigenesis and metastasis. Cancer-specific gene-expression profiles stem from gene regulatory networks fueled by genetic and epigenetic defects, and by abnormal signals of the tumor microenvironment. These oncogenic signals ultimately engage the transcriptional machinery on the cis -regulatory elements of a host of effector genes, through recruitment of transcription factors (TFs), co-activators and chromatin regulators. That said, whether gene-expression in cancer cells is the chaotic product of myriad regulations or rather a relatively ordered process orchestrated by few TFs (master regulators) has long remained enigmatic. Recent work on the YAP/TAZ co-activators has been instrumental to break new ground into this outstanding issue, revealing that tumor cells hijack growth programs that are active during development and regeneration through engagement of a small set of interconnected TFs and their nuclear partners.

13.
Nat Commun ; 12(1): 2340, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879786

RESUMO

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human tumors, highlighting a pan-cancer epigenetic rewiring which at single-cell level distinguishes malignant from normal cell populations. YAP/TAZ inhibition in established tumor organoids causes extensive cell death unveiling their essential role in tumor maintenance. This work indicates a common layer of YAP/TAZ-fueled enhancer reprogramming that is key for the cancer cell state and can be exploited for the development of improved therapeutic avenues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Epigênese Genética , Transativadores/genética , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Humanos , Modelos Genéticos , Organoides/metabolismo , RNA-Seq , Análise de Célula Única , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
14.
Nat Cancer ; 2(2): 174-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33644767

RESUMO

Glioblastoma (GBM) is a devastating human malignancy. GBM stem-like cells (GSCs) drive tumor initiation and progression. Yet, the molecular determinants defining GSCs in their native state in patients remain poorly understood. Here we used single cell datasets and identified GSCs at the apex of the differentiation hierarchy of GBM. By reconstructing the GSCs' regulatory network, we identified the YAP/TAZ coactivators as master regulators of this cell state, irrespectively of GBM subtypes. YAP/TAZ are required to install GSC properties in primary cells downstream of multiple oncogenic lesions, and required for tumor initiation and maintenance in vivo in different mouse and human GBM models. YAP/TAZ act as main roadblock of GSC differentiation and their inhibition irreversibly lock differentiated GBM cells into a non-tumorigenic state, preventing plasticity and regeneration of GSC-like cells. Thus, GSC identity is linked to a key molecular hub integrating genetics and microenvironmental inputs within the multifaceted biology of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/genética , Carcinogênese/patologia , Plasticidade Celular , Glioblastoma/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Análise de Célula Única
16.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
17.
Nature ; 587(7834): 377-386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32894860

RESUMO

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Medicina/métodos , Medicina/tendências , Patologia , Análise de Célula Única , Inteligência Artificial , Atenção à Saúde/ética , Atenção à Saúde/normas , Diagnóstico Precoce , Educação Médica , Europa (Continente) , Feminino , Saúde , Humanos , Legislação Médica , Masculino , Medicina/normas
18.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726636

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Assuntos
Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Pinocitose/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis , beta Catenina/metabolismo
19.
Cancer Discov ; 10(11): 1758-1773, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32651166

RESUMO

Tumor-associated macrophages (TAM) are regulators of extracellular matrix (ECM) remodeling and metastatic progression, the main cause of cancer-associated death. We found that disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) is highly expressed in tumor-infiltrating TAMs and that its genetic ablation significantly impairs lung metastasis formation. DAB2-expressing TAMs, mainly localized along the tumor-invasive front, participate in integrin recycling, ECM remodeling, and directional migration in a tridimensional matrix. DAB2+ macrophages escort the invasive dissemination of cancer cells by a mechanosensing pathway requiring the transcription factor YAP. In human lobular breast and gastric carcinomas, DAB2+ TAMs correlated with a poor clinical outcome, identifying DAB2 as potential prognostic biomarker for stratification of patients with cancer. DAB2 is therefore central for the prometastatic activity of TAMs. SIGNIFICANCE: DAB2 expression in macrophages is essential for metastasis formation but not primary tumor growth. Mechanosensing cues, activating the complex YAP-TAZ, regulate DAB2 in macrophages, which in turn controls integrin recycling and ECM remodeling in 3-D tissue matrix. The presence of DAB2+ TAMs in patients with cancer correlates with worse prognosis.This article is highlighted in the In This Issue feature, p. 1611.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Neoplasias/genética , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA