Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255855

RESUMO

Sterols exert a profound influence on numerous cellular processes, playing a crucial role in both health and disease. However, comprehending the effects of sterol dysfunction on cellular physiology is challenging. Consequently, numerous processes affected by impaired sterol biosynthesis still elude our complete understanding. In this study, we made use of yeast strains that produce cholesterol instead of ergosterol and investigated the cellular response mechanisms on the transcriptome as well as the lipid level. The exchange of ergosterol for cholesterol caused the downregulation of phosphatidylethanolamine and phosphatidylserine and upregulation of phosphatidylinositol and phosphatidylcholine biosynthesis. Additionally, a shift towards polyunsaturated fatty acids was observed. While the sphingolipid levels dropped, the total amounts of sterols and triacylglycerol increased, which resulted in 1.7-fold enlarged lipid droplets in cholesterol-producing yeast cells. In addition to internal storage, cholesterol and its precursors were excreted into the culture supernatant, most likely by the action of ABC transporters Snq2, Pdr12 and Pdr15. Overall, our results demonstrate that, similarly to mammalian cells, the production of non-native sterols and sterol precursors causes lipotoxicity in K. phaffii, mainly due to upregulated sterol biosynthesis, and they highlight the different survival and stress response mechanisms on multiple, integrative levels.


Assuntos
Fitosteróis , Esteróis , Animais , Humanos , Saccharomyces cerevisiae , Ergosterol , Colesterol , Mamíferos
2.
Bioengineering (Basel) ; 10(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136003

RESUMO

Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO2, are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase 'TesA. The best strains secreted >1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.

3.
J Colloid Interface Sci ; 645: 627-638, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37167912

RESUMO

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.


Assuntos
COVID-19 , Lipoproteínas HDL , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/metabolismo , Colesterol , Triglicerídeos
4.
Front Mol Biosci ; 9: 965315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579187

RESUMO

Green leaf volatiles (GLVs) cover a group of mainly C6-and C9-aldehydes, -alcohols and -esters. Their name refers to their characteristic herbal and fruity scent, which is similar to that of freshly cut grass or vegetables. Lipoxygenases (LOXs) catalyze the peroxidation of unsaturated fatty acids. The resulting hydroperoxy fatty acids are then cleaved into aldehydes and oxo acids by fatty acid hydroperoxide lyases (HPLs). Herein, we equipped the yeast Komagataella phaffii with recombinant genes coding for LOX and HPL, to serve as a biocatalyst for GLV production. We expressed the well-known 13S-specific LOX gene from Pleurotus sapidus and a compatible HPL gene from Medicago truncatula. In bioconversions, glycerol induced strains formed 12.9 mM hexanal using whole cells, and 8 mM hexanol was produced with whole cells induced by methanol. We applied various inducible and constitutive promoters in bidirectional systems to influence the final ratio of LOX and HPL proteins. By implementing these recombinant enzymes in Komagataella phaffii, challenges such as biocatalyst supply and lack of product specificity can finally be overcome.

5.
Methods Mol Biol ; 2513: 135-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781204

RESUMO

Gene knockout is a key technology in the development of cell factories and basic research alike. The methylotrophic yeast Pichia pastoris is typically employed as a producer of proteins and of fine chemicals, due to its ability to accumulate high cell densities in conjunction with a set of strong inducible promoters. However, protocols for genome engineering in this host are still cumbersome and time-consuming. Moreover, extensive genome engineering raises the need for a multitude of selection markers, which are limited in P. pastoris. In this chapter, we describe a fast and efficient method for gene disruption in P. pastoris that utilizes marker recycling to enable repetitive genome engineering cycles. A set of ready-to-use knockout vectors simplifies cloning procedures and facilitates quick knockout generation.


Assuntos
Saccharomycetales , Biomarcadores , Técnicas de Inativação de Genes , Plasmídeos/genética , Saccharomyces cerevisiae
6.
Methods Mol Biol ; 2513: 79-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781201

RESUMO

Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.


Assuntos
Escherichia coli , Pichia , Escherichia coli/metabolismo , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Saccharomycetales
7.
J Colloid Interface Sci ; 602: 732-739, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157514

RESUMO

Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed. Here we demonstrate that the SARS-CoV-2 spike (S) protein interferes with the function of lipoproteins, and that this is dependent on cholesterol. In particular, the ability of HDL to exchange lipids from model cellular membranes is altered when co-incubated with the spike protein. Additionally, the S protein removes lipids and cholesterol from model membranes. We propose that the S protein affects HDL function by removing lipids from it and remodelling its composition/structure.


Assuntos
Lipídeos/química , Lipoproteínas HDL/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus/química
8.
Front Chem ; 9: 630152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996741

RESUMO

Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.

9.
Mol Syst Biol ; 17(5): e10280, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33943004

RESUMO

The co-catabolism of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady-state chemostat system. We demonstrate that Mtb efficiently co-metabolises either cholesterol or glycerol, in combination with two-carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt.


Assuntos
Carbono/metabolismo , Colesterol/metabolismo , Glicerol/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Técnicas Bacteriológicas , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Marcação por Isótopo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Mycobacterium tuberculosis/metabolismo , Fenótipo
10.
ACS Nano ; 15(4): 6709-6722, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33754708

RESUMO

Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP's plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.


Assuntos
Nanopartículas , Apolipoproteínas E/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Distribuição Tecidual
11.
Biotechnol J ; 15(11): e2000089, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32749051

RESUMO

Pseudomonas aeruginosa lipoxygenase (PaLOX) catalyzes the peroxidation of unsaturated fatty acids. Not only linoleic acid, but also linolenic acid and oleic acid are oxidized. The natural host secretes PaLOX into the periplasmic space. Herein, the aim is to secrete PaLOX to the culture supernatant of Pichia pastoris. Since protein background in the culture supernatant is typically rather low, this strategy allows for almost pure production of PaLOX applicable for the valorization of renewable fatty acids, for example for the production of green leaf volatiles. Using the CAT1 promoter system and the well-established α-factor signal sequence for secretion, methanol- and glycerol-induced secretion are compared and the latter shows four times more LOX activity in the culture supernatant under methanol-free conditions. In addition, secreted PaLOX is purified and the specific activity with enzyme in culture supernatant is compared. Notably, the predominant specific activity is achieved for enzyme in culture supernatant - 11.6 U mg-1 - reaching five times higher specific activity than purified PaLOX.


Assuntos
Glicerol , Pichia , Lipoxigenase/genética , Metanol , Pichia/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Saccharomycetales
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158769, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712249

RESUMO

Lipoproteins play a central role in the development of atherosclerosis. High and low-density lipoproteins (HDL and LDL), known as 'good' and 'bad' cholesterol, respectively, remove and/or deposit lipids into the artery wall. Hence, insight into lipid exchange processes between lipoproteins and cell membranes is of particular importance in understanding the onset and development of cardiovascular disease. In order to elucidate the impact of phospholipid tail saturation and the presence of cholesterol in cell membranes on these processes, neutron reflection was employed in the present investigation to follow lipid exchange with both HDL and LDL against model membranes. Mirroring clinical risk factors for the development of atherosclerosis, lower exchange was observed in the presence of cholesterol, as well as for an unsaturated phospholipid, compared to faster exchange when using a fully saturated phospholipid. These results highlight the importance of membrane composition on the interaction with lipoproteins, chiefly the saturation level of the lipids and presence of cholesterol, and provide novel insight into factors of importance for build-up and reversibility of atherosclerotic plaque. In addition, the correlation between the results and well-established clinical risk factors suggests that the approach taken can be employed also for understanding a broader set of risk factors including, e.g., effects of triglycerides and oxidative stress, as well as local effects of drugs on atherosclerotic plaque formation.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Lipídeos/genética , Lipoproteínas/genética , Aterosclerose/genética , Aterosclerose/patologia , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/genética , Gorduras na Dieta , Ácidos Graxos , Humanos , Lipoproteínas/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Triglicerídeos/genética , Triglicerídeos/metabolismo
13.
Nat Commun ; 11(1): 2258, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382158

RESUMO

En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step comprises decarboxylation of the intermediate hydroxy acids by the photoactivated decarboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach.


Assuntos
Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Limosilactobacillus reuteri/metabolismo , Stenotrophomonas maltophilia/metabolismo , Especificidade por Substrato
14.
Yeast ; 37(1): 163-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606910

RESUMO

The triterpenoid (+)-ambrein is the major component of ambergris, a coprolite of the sperm whale that can only be rarely found on shores. Upon oxidative degradation of (+)-ambrein, several fragrance molecules are formed, amongst them (-)-ambrox, one of the highest valued compounds in the perfume industry. In order to generate a Saccharomyces cerevisiae whole-cell biocatalyst for the production of (+)-ambrein, intracellular supply of the squalene was enhanced by overexpression of two central enzymes in the mevalonate and sterol biosynthesis pathway, namely the N-terminally truncated 3-hydroxy-3-methylglutaryl-CoA reductase 1 (tHMG) and the squalene synthase (ERG9). In addition, another key enzyme in sterol biosynthesis, squalene epoxidase (ERG1) was inhibited by an experimentally defined amount of the inhibitor terbinafine in order to reduce flux of squalene towards ergosterol biosynthesis while retaining sufficient activity to maintain cell viability and growth. Heterologous expression of a promiscuous variant of Bacillus megaterium tetraprenyl-ß-curcumene cyclase (BmeTC-D373C), which has been shown to be able to catalyse the conversion of squalene to 3-deoxyachillol and then further to (+)-ambrein resulted in production of these triterpenoids in S. cerevisiae for the first time. Triterpenoid yields are comparable with the best microbial production chassis described in literature so far, the methylotrophic yeast Pichia pastoris. Consequently, we discuss similarities and differences of these two yeast species when applied for whole-cell (+)-ambrein production.


Assuntos
Engenharia Metabólica/métodos , Naftóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálise , Furanos , Microrganismos Geneticamente Modificados , Naftalenos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Terbinafina/metabolismo , Triterpenos/metabolismo
15.
J Agric Food Chem ; 67(49): 13367-13392, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591878

RESUMO

Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.


Assuntos
Aldeído Liases/química , Sistema Enzimático do Citocromo P-450/química , Aromatizantes/química , Lipoxigenases/química , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Compostos Orgânicos Voláteis/química , Aldeído Liases/genética , Aldeído Liases/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Aromatizantes/metabolismo , Lipoxigenases/genética , Lipoxigenases/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo
16.
Yeast ; 36(9): 557-570, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31148217

RESUMO

Targeted gene knockouts play an important role in the study of gene function. For the generation of knockouts in the industrially important yeast Pichia pastoris, several protocols have been published to date. Nevertheless, creating a targeted knockout in P. pastoris still is a time-consuming process, as the existing protocols are labour intensive and/or prone to accumulate nucleotide mutations. In this study, we introduce a novel, user-friendly vector-based system for the generation of targeted knockouts in P. pastoris. Upon confirming the successful knockout, respective selection markers can easily be recycled. Excision of the marker is mediated by Flippase (Flp) recombinase and occurs at high frequency (≥95%). We validated our knockout system by deleting 20 (confirmed and putative) protease genes and five genes involved in biosynthetic pathways. For the first time, we describe gene deletions of PRO3 and PHA2 in P. pastoris, genes involved in proline, and phenylalanine biosynthesis, respectively. Unexpectedly, knockout strains of PHA2 did not display the anticipated auxotrophy for phenylalanine but rather showed a bradytroph phenotype on minimal medium hinting at an alternative but less efficient pathway for production of phenylalanine exists in P. pastoris. Overall, all knockout vectors can easily be adapted to the gene of interest and strain background by efficient exchange of target homology regions and selection markers in single cloning steps. Average knockout efficiencies for all 25 genes were shown to be 40%, which is comparably high.

17.
Molecules ; 24(11)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159367

RESUMO

Acyclic monoterpenes constitute a large and highly abundant class of secondary plant metabolites and are, therefore, attractive low-cost raw materials for the chemical industry. To date, numerous biocatalysts for their transformation are known, giving access to highly sought-after monoterpenoids. In view of the high selectivity associated with many of these reactions, the demand for enzymes generating commercially important target molecules is unabated. Here, linalool (de)hydratase-isomerase (Ldi, EC 4.2.1.127) from Castellaniella defragrans was examined for the regio- and stereoselective hydration of the acyclic monoterpene ß-myrcene to (S)-(+)-linalool. Expression of the native enzyme in Escherichia coli allowed for identification of bottlenecks limiting enzyme activity, which were investigated by mutating selected residues implied in enzyme assembly and function. Combining these analyses with the recently published 3D structures of Ldi highlighted the precisely coordinated reduction-oxidation state of two cysteine pairs in correct oligomeric assembly and the catalytic mechanism, respectively. Subcellular targeting studies upon fusion of Ldi to different signal sequences revealed the significance of periplasmic localization of the mature enzyme in the heterologous expression host. This study provides biochemical and mechanistic insight into the hydration of ß-myrcene, a nonfunctionalized terpene, and emphasizes its potential for access to scarcely available but commercially interesting tertiary alcohols.


Assuntos
Alcenos/metabolismo , Betaproteobacteria/metabolismo , Hidroliases/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Álcoois/química , Álcoois/metabolismo , Alcenos/química , Catálise , Escherichia coli/metabolismo , Hidroliases/química , Hidrólise , Isomerases , Monoterpenos/química
18.
Appl Microbiol Biotechnol ; 103(14): 5501-5516, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31129740

RESUMO

More than 70,000 different terpenoid structures are known so far; many of them offer highly interesting applications as pharmaceuticals, flavors and fragrances, or biofuels. Extraction of these compounds from their natural sources or chemical synthesis is-in many cases-technically challenging with low or moderate yields while wasting valuable resources. Microbial production of terpenoids offers a sustainable and environment-friendly alternative starting from simple carbon sources and, frequently, safeguards high product specificity. Here, we provide an overview on employing recombinant bacteria and yeasts for heterologous de novo production of terpenoids. Currently, Escherichia coli and Saccharomyces cerevisiae are the two best-established production hosts for terpenoids. An increasing number of studies have been successful in engineering alternative microorganisms for terpenoid biosynthesis, which we intend to highlight in this review. Moreover, we discuss the specific engineering challenges as well as recent advances for microbial production of different classes of terpenoids. Rationalizing the current stages of development for different terpenoid production hosts as well as future prospects shall provide a valuable decision basis for the selection and engineering of the cell factory(ies) for industrial production of terpenoid target molecules.


Assuntos
Bactérias/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Bactérias/genética , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Leveduras/genética , Leveduras/metabolismo
19.
Angew Chem Int Ed Engl ; 58(22): 7480-7484, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30848865

RESUMO

The addition of water to non-activated carbon-carbon double bonds catalyzed by fatty acid hydratases (FAHYs) allows for highly regio- and stereoselective oxyfunctionalization of renewable oil feedstock. So far, the applicability of FAHYs has been limited to free fatty acids, mainly owing to the requirement of a carboxylate function for substrate recognition and binding. Herein, we describe for the first time the hydration of oleic acid (OA) derivatives lacking this free carboxylate by the oleate hydratase from Elizabethkingia meningoseptica (OhyA). Molecular docking of OA to the OhyA 3D-structure and a sequence alignment uncovered conserved amino acid residues at the entrance of the substrate channel as target positions for enzyme engineering. Exchange of selected amino acids gave rise to OhyA variants which showed up to an 18-fold improved conversion of OA derivatives, while retaining the excellent regio- and stereoselectivity in the olefin hydration reaction.


Assuntos
Ácidos Graxos/metabolismo , Flavobacteriaceae/enzimologia , Hidroliases/química , Hidroliases/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
20.
Sci Rep ; 9(1): 5118, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914734

RESUMO

The deuteration of biomolecules provides advanced opportunities for neutron scattering studies. For low resolution studies using techniques such as small-angle neutron scattering and neutron reflection, the level of deuteration of a sample can be varied to match the scattering length density of a specific D2O/H2O solvent mixture. This can be of major value in structural studies where specific regions of a complex system can be highlighted, and others rendered invisible. This is especially useful in analyses of the structure and dynamics of membrane components. In mammalian membranes, the presence of cholesterol is crucial in modulating the properties of lipids and in their interaction with proteins. Here, a protocol is described for the production of partially deuterated cholesterol which has a neutron scattering length density that matches that of 100% D2O solvent (hereby named matchout cholesterol). The level of deuteration was determined by mass spectrometry and nuclear magnetic resonance. The cholesterol match-point was verified experimentally using small angle neutron scattering. The matchout cholesterol was used to investigate the incorporation of cholesterol in various phosphatidylcholine supported lipid bilayers by neutron reflectometry. The study included both saturated and unsaturated lipids, as well as lipids with varying chain lengths. It was found that cholesterol is distributed asymmetrically within the bilayer, positioned closer to the headgroups of the lipids than to the middle of the tail core, regardless of the phosphatidylcholine species.


Assuntos
Colesterol/química , Óxido de Deutério/química , Bicamadas Lipídicas/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA