Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Endocrinol ; 29(6): 801-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25866875

RESUMO

The effects of cannabinoids have been known for centuries and over the past several decades two G protein-coupled receptors, CB1 and CB2, that are responsible for their activity have been identified. Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery has been characterized, and synthetic agents have been designed to modulate these receptors. Selective agents including agonists, antagonists, inverse agonists, and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone. As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated. The CB1 receptor, although ubiquitous, is densely expressed in the brain, and CB2 is largely found on cells of immune origin. This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability. In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic ß-cells, insulin resistance, and feeding behavior leading toward obesity. The roles of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converge at inflammatory cell activation, thereby providing an opportunity for intervention. Last, CB2 modulation is discussed in the context of an experimental model of postmenopausal osteoporosis. Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.


Assuntos
Moduladores de Receptores de Canabinoides/uso terapêutico , Pesquisa Translacional Biomédica , Doença , Humanos , Neuroproteção , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo
2.
Mol Pharmacol ; 68(6): 1623-35, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16157695

RESUMO

The CB1 cannabinoid receptor has been shown to play important physiological roles in the central nervous system, as well as peripherally, and is a target for development of therapeutic medications. To gain insight on the ligand binding site(s) and structural features of activation, we designed and synthesized (-)-7'-isothiocyanato-11-hydroxy-1',1'-dimethylheptylhexahydrocannabinol (AM841), a classical cannabinoid affinity label that incorporates an isothiocyanate substituent as an electrophilic reactive group capable of interacting irreversibly with a suitably located and properly oriented nucleophilic amino acid residue at or near the binding site. To obtain evidence for the site of covalent attachment of AM841, C6.47, identified in part by interactive ligand docking, was mutated to serine, alanine, and leucine to reduce or eliminate the nucleophilic character. Wild-type (WT) and mutant CB1 receptors were evaluated for their abilities to recognize a series of cannabinergic ligands. Each bound comparably to WT, excluding C6.47L, which displayed a reduced affinity for 3H-labeled (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP55940), AM841, 11-hydroxy-1',1'-dimethylheptylhexahydrocannabinol (AM4056), and (-)-7'-bromo-11-hydroxy-1',1'-dimethylheptylhexahydrocannabinol (AM4043) and an improvement in affinity for (-)-trans-delta9-tetrahydrocannabinol (delta9-THC). The affinity of 3H-labeled [2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](naphthyl)methanone (WIN55212-2) was unchanged across all mutants. It is noteworthy that AM841 was shown to bind irreversibly to WT CB1 but exhibited no covalent attachment with the mutants and behaved as an agonist suggesting irreversible attachment to C6.47 maintains CB1 in its active state. The evidence presented identifies C6.47 as the site of covalent bond formation with AM841 and combined with the binding data fully supports the molecular modeling. These studies present the first report of tandem applications of affinity labeling, site-directed mutagenesis, and interactive ligand docking for CB1.


Assuntos
Canabinol/análogos & derivados , Dronabinol/análogos & derivados , Receptor CB1 de Canabinoide/metabolismo , Marcadores de Afinidade , Sítios de Ligação , Canabinol/química , Cisteína , Dronabinol/química , Humanos , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptor CB1 de Canabinoide/genética , Eletricidade Estática
3.
Planta Med ; 71(8): 701-5, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16142631

RESUMO

Alkamides are the major lipophilic constituents of Echinacea angustifolia roots. Due to their structural similarity with anandamide, we have evaluated their ability to bind to rodent cannabinoid receptors CB1 and CB2 by a standard receptor binding assay using [(3)H]CP-55,940 as a radioligand. The alkamides exhibited selective affinity especially to CB2 receptors and can therefore be considered as CB ligands. Most of the alkamides showed good metabolic stability as indicated by the similarity between affinity to CB1 determined in the presence/absence of the protease inhibitor PMSF. It is suggested that CB2 interactions may be the molecular mode of action of Echinacea alkamides as immunomodulators.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Echinacea , Endocanabinoides , Fitoterapia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/administração & dosagem , Moduladores de Receptores de Canabinoides/uso terapêutico , Camundongos , Raízes de Plantas , Ratos , Baço/metabolismo , Relação Estrutura-Atividade
4.
Mol Reprod Dev ; 63(3): 376-87, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12237954

RESUMO

Ejaculated mammalian sperm require several hours exposure to secretions in female reproductive tracts, or incubation in appropriate culture medium in vitro, before acquiring the capacity to fertilize eggs. Arachidonylethanolamide (AEA), also known as anandamide, is a novel lipid-signal molecule that is an endogenous agonist (endocannabinoid) for cannabinoid receptors. We now report that AEA is present in human seminal plasma, mid-cycle oviductal fluid, and follicular fluid analyzed by high-performance liquid chromatography/mass spectrometry. Sperm are sequentially exposed to these reproductive fluids as they move from the vagina to the site of fertilization in the oviduct. Specific binding of the potent cannabinoid agonist [(3)H]CP-55,940 to human sperm was saturable (K(D) 9.71 +/- 1.04 nM), suggesting that they express cannabinoid receptors. R-methanandamide [AM-356], a potent and metabolically stable AEA analog, and (-)delta(9) tetrahydrocannabinol (THC), the major psychoactive constituent of Cannabis, modulated capacitation and fertilizing potential of human sperm in vitro. AM-356 elicited biphasic effects on the incidence of hyperactivated sperm motility (HA) between 1 and 6 hr of incubation: at (2.5 nM) it inhibited HA, while at (0.25 nM) it stimulated HA. Both AM-356 and THC inhibited morphological alterations over acrosomal caps between 2 and 6 hr (IC(50) 5.9 +/- 0.6 pM and 3.5 +/- 1.5 nM, respectively). Sperm fertilizing capacity, measured in the Hemizona Assay, was reduced 50% by (1 nM) AM-356. These findings suggest that AEA-signaling may regulate sperm functions required for fertilization in human reproductive tracts, and imply that smoking of marijuana could impact these processes. This study has potential medical and public policy ramifications because of the incidence of marijuana abuse by adults in our society, previously documented reproductive effects of marijuana, and the ongoing debate about medicinal use of marijuana and cannabinoids.


Assuntos
Ácidos Araquidônicos/metabolismo , Fertilização/fisiologia , Transdução de Sinais/fisiologia , Espermatozoides/metabolismo , Acrossomo/metabolismo , Moduladores de Receptores de Canabinoides , Canabinoides/agonistas , Canabinoides/farmacologia , Endocanabinoides , Fertilidade/fisiologia , Fertilização/efeitos dos fármacos , Humanos , Masculino , Alcamidas Poli-Insaturadas , Psicotrópicos/agonistas , Psicotrópicos/farmacologia , Receptores de Canabinoides , Receptores de Droga/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA