Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 299(8): 104889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286041

RESUMO

Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.


Assuntos
Aptâmeros de Nucleotídeos , Elastase de Leucócito , Inibidores de Serina Proteinase , Humanos , Fibrose Cística/tratamento farmacológico , Enfisema/tratamento farmacológico , Elastase de Leucócito/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Sensibilidade e Especificidade , Ativação Enzimática/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Células Cultivadas
2.
Front Oncol ; 13: 1293728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282676

RESUMO

Fibroblast Growth Factor Receptors (FGFRs) are a family of receptor tyrosine kinases expressed on a plethora of cell membranes. They play crucial roles in both embryonic development and adult tissue functions. There is an increasing amount of evidence that FGFR-mediated oncogenesis is mainly related to gene amplification, activating mutations, or translocation in tumors of various histological types. Dysregulation of FGFRs has been implicated in a wide variety of neoplasms, such as bladder, gastric, and lung cancers. Given their functional significance, FGFRs emerge as promising targets for cancer therapy. Here, we introduce CPL304100, an innovative and highly potent FGFR1-3 kinase inhibitor demonstrating excellent in vitro biological activity. Comprehensive analyses encompassed kinase assays, cell line evaluations, PK/PD studies surface plasmon resonance studies, molecular docking, and in vivo testing in mouse xenografts. CPL304110 exhibited a distinctive binding profile to FGFR1/2/3 kinase domains, accompanied by a good safety profile and favorable ADMET parameters. Selective inhibition of tumor cell lines featuring active FGFR signaling was observed, distinguishing it from cell lines lacking FGFR aberrations (FGFR1, 2, and 3). CPL304110 demonstrated efficacy in both FGFR-dependent cell lines and patient-derived tumor xenograft (PDTX) in vivo models. Comparative analyses with FDA-approved FGFR inhibitors, erdafitinib and pemigatinib, revealed certain advantages of CPL304110 in both in vitro and in vivo assessments. Encouraging preclinical results led the way for the initiation of a Phase I clinical trial (01FGFR2018; NCT04149691) to further evaluate CPL304110 as a novel anticancer therapy.

3.
Front Pharmacol ; 13: 999685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438799

RESUMO

Background: Phosphodiesterase 10A (PDE10A) is expressed almost exclusively in the striatum and its inhibition is suggested to offer potential treatment in disorders associated with basal ganglia. We evaluated the selectivity, cytotoxicity, genotoxicity, pharmacokinetics and potential adverse effects of a novel PDE10A inhibitor, CPL500036, in vivo. Methods: The potency of CPL500036 was demonstrated by microfluidic technology, and selectivity was investigated in a radioligand binding assay against 44 targets. Cardiotoxicity in vitro was evaluated in human ether-a-go-go related gene (hERG)-potassium channel-overexpressing cells by the patch-clamp method and by assessing key parameters in 3D cardiac spheroids. Cytotoxicity was determined in H1299, HepG2 and SH-SY5Y cell lines. The Ames test was used for genotoxicity analyses. During in vivo studies, CPL500036 was administered by oral gavage. CPL500036 exposure were determined by liquid chromatography-tandem mass spectrometry and plasma protein binding was assessed. The bar test was employed to assess catalepsy. Prolactin and glucose levels in rat blood were measured by ELISAs and glucometers, respectively. Cardiovascular safety in vivo was investigated in dogs using a telemetry method. Results: CPL500036 inhibited PDE10A at an IC50 of 1 nM, and interacted only with the muscarinic M2 receptor as a negative allosteric modulator with an IC50 of 9.2 µM. Despite inhibiting hERG tail current at an IC25 of 3.2 µM, cardiovascular adverse effects were not observed in human cardiac 3D spheroids or in vivo. Cytotoxicity in vitro was observed only at > 60 µM and genotoxicity was not recorded during the Ames test. CPL500036 presented good bioavailability and penetration into the brain. CPL500036 elicited catalepsy at 0.6 mg/kg, but hyperprolactinemia or hyperglycemic effects were not observed in doses up to 3 mg/kg. Conclusion: CPL500036 is a potent, selective and orally bioavailable PDE10A inhibitor with a good safety profile distinct from marketed antipsychotics. CPL500036 may be a compelling drug candidate.

4.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015075

RESUMO

Phosphoinositide 3-kinase (PI3K) is the family of lipid kinases participating in vital cellular processes such as cell proliferation, growth, migration, or cytokines production. Due to the high expression of these proteins in many human cells and their involvement in metabolism regulation, normal embryogenesis, or maintaining glucose homeostasis, the inhibition of PI3K (especially the first class which contains four subunits: α, ß, γ, δ) is considered to be a promising therapeutic strategy for the treatment of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) or multiple sclerosis. In this work, we synthesized a library of benzimidazole derivatives of pyrazolo[1,5-a]pyrimidine representing a collection of new, potent, active, and selective inhibitors of PI3Kδ, displaying IC50 values ranging from 1.892 to 0.018 µM. Among all compounds obtained, CPL302415 (6) showed the highest activity (IC50 value of 18 nM for PI3Kδ), good selectivity (for PI3Kδ relative to other PI3K isoforms: PI3Kα/δ = 79; PI3Kß/δ = 1415; PI3Kγ/δ = 939), and promising physicochemical properties. As a lead compound synthesized on a relatively large scale, this structure is considered a potential future candidate for clinical trials in SLE treatment.

5.
Cancers (Basel) ; 14(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626092

RESUMO

Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.

6.
Pulm Pharmacol Ther ; 73-74: 102127, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429651

RESUMO

Ketamine and its enantiomer esketamine have gained much attention in recent years as potent, fast-acting agents for the management of treatment-resistant depression. However, an alternative to oral ketamine administration is required to ensure adequate systemic exposure as the drug undergoes extensive first-pass metabolism. We propose dry powder inhalation as a new esketamine delivery route. Here, we examine the pharmacokinetics, pharmacodynamics, toxicology and safety of this novel esketamine administration method. Esketamine (10 mg/kg) and ketamine racemate (20 mg/kg) were administered to rats by dry powder inhalation, intravenous injection or intratracheal instillation and the pharmacokinetics of these treatments were compared. Analyte concentration of ketamine stereoisomers and their metabolites was assessed by LC-MS/MS method. Esketamine showed a clinically relevant pharmacokinetic profile, with high bioavailability (62%) and relatively low maximum concentration peaks. Esketamine exhibited high penetration of the blood-brain barrier, but pharmacodynamic examinations of brain homogenates showed no changes in selected protein phosphorylation or expression analyzed by the immunoblotting method. We conducted GLP-compliant 14-day and 28-day general toxicity studies in rats and dogs, respectively, subjected to dry esketamine powder inhalation. The maximum daily dosages were 46.5 mg/kg and 36.5 mg/kg, respectively. We also performed pharmacological safety studies. Esketamine inhaled as dry powder had an expected safety profile consistent with its known pharmacological action. None of its observed effects were considered toxicologically significant. The pharmacological safety studies confirmed that the observed effects were transient and that inhaled esketamine had a good safety profile. Hence, our preclinical studies demonstrated that dry powder inhalation is a highly efficacious and safe delivery route for esketamine and may be a viable alternative administration route meriting further clinical development.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cromatografia Líquida , Cães , Ketamina/efeitos adversos , Pós , Ratos , Espectrometria de Massas em Tandem
7.
Eur J Med Chem ; 226: 113810, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537444

RESUMO

Due to a unique mechanism that limits the possibility of hypoglycemia, the free fatty acid receptor (FFA1) is an attractive target for the treatment of type 2 diabetes. So far, however, none of the promising agonists have been able to enter the market. The most advanced clinical candidate, TAK-875, was withdrawn from phase III clinical trials due to liver safety issues. In this article, we describe the key aspects leading to the discovery of CPL207280 (13), the design of which focused on long-term safety. The introduction of small, nature-inspired acyclic structural fragments resulted in compounds with retained high potency and a satisfactory pharmacokinetic profile. Optimized synthesis and upscaling provided a stable, solid form of CPL207280-51 (45) with the properties required for the toxicology studies and ongoing clinical trials.


Assuntos
Caproatos/farmacologia , Desenvolvimento de Medicamentos , Receptores Acoplados a Proteínas G/agonistas , Animais , Caproatos/síntese química , Caproatos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
PLoS One ; 16(9): e0257477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555055

RESUMO

GPR40 (FFAR1) is a promising target for the managing type 2 diabetes (T2D). The most advanced GPR40 agonist TAK-875 exhibited satisfactory glucose-lowering effects in phase II and III studies. However, the phase III studies of TAK-875 revealed drug-induced liver injury (DILI). It is unknown whether DILI is a consequence of a specific GPR40 agonist or is an inherent feature of all GPR40 agonists. CPL207280 is a novel GPR40 agonist that improves diabetes in Zucker Diabetic Fatty (ZDF) rats, Goto Kakizaki (GK) rats and db/db mice. In this report, the DILI-related toxicity of CPL207280 was compared directly with that of TAK-875. In vitro studies evaluating hepatic biliary transporter inhibition, mitochondrial function, and metabolic profiling were performed in hepatocytes from different species. The long term toxicity of CPL207280 was studied in vivo in rats and monkeys. Activity of CPL207280 was one order of magnitude lesser than that of TAK-875 for the inhibition of bile acid transporters. CPL207280 had a negligible effect on the hepatic mitochondria. In contrast to TAK-875, which was metabolized through toxic glucuronidation, CPL207280 was metabolized mainly through oxidation. No deleterious hepatic effects were observed in chronically treated healthy and diabetic animals. The study presents promising data on the feasibility of creating a liver-safe GPR40 agonist. Additionally, it can be concluded that DILI is not a hallmark of GPR40 agonists; it is linked to the intrinsic properties of an individual agonist.


Assuntos
Benzofuranos , Hipoglicemiantes , Sulfonas , Animais , Glicemia , Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Ratos
9.
Eur J Pharmacol ; 910: 174460, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34469756

RESUMO

Phosphodiesterase 10A (PDE10A), the enzyme which catalyzes hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is located almost exclusively in striatal γ-amino-butyric acid (GABA)ergic medium spiny neurons (MSNs). Since dopaminergic deficiency in Parkinson's disease (PD) leads to functional imbalance of striatal direct and indirect output pathways formed by MSNs, PDE10A seems to be of special interest as a potential therapeutic target in PD. The aim of the present study was to examine the influence of 7-{5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl}-2-phenylimidazo[1,2-a]pyrimidine (CPL500036), a novel selective inhibitor of PDE10A, on sensorimotor deficits and therapeutic effects of L-3,4-dihydroxyphenylalanine (L-DOPA) in hemiparkinsonian rats. Animals were unilaterally lesioned with 6-hydroxydopamine, and their sensorimotor deficits were examined in the stepping, cylinder, vibrissae and catalepsy tests. CPL500036 (0.1 and 0.3 mg/kg) was administered either acutely or chronically (2 weeks), alone or in combination with L-DOPA/benserazide (6 mg/kg/6 mg/kg). Acute treatment with CPL500036 reversed the lesion-induced impairments of contralateral forelimb use in the stepping and cylinder tests but did not influence deficits in the vibrissae test and the lesion-induced catalepsy. Moreover, CPL500036 did not diminish the therapeutic effects produced by acute and chronic treatment with L-DOPA in these tests. The present study suggests a potential use of CPL500036 as a co-treatment to L-DOPA in PD therapy.


Assuntos
Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Neurônios GABAérgicos/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Masculino , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/diagnóstico , Doença de Parkinson Secundária/patologia , Inibidores de Fosfodiesterase/farmacologia , Ratos , Índice de Gravidade de Doença
10.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451801

RESUMO

TrkB is a tyrosine kinase receptor that is activated upon binding to brain-derived neurotrophic factor (BDNF). To date, the search for low-molecular-weight molecules mimicking BDNF's action has been unsuccessful. Several molecules exerting antidepressive effects in vivo, such as 7,8-DHF, have been suggested to be TrkB agonists. However, more recent publications question this hypothesis. In this study, we developed a set of experimental procedures including the evaluation of direct interactions, dimerization, downstream signaling, and cytoprotection in parallel with physicochemical and ADME methods to verify the pharmacology of 7,8-DHF and other potential reference compounds, and perform screening for novel TrkB agonists. 7,8 DHF bound to TrkB with Kd = 1.3 µM; however, we were not able to observe any other activity against the TrkB receptor in SN56 T48 and differentiated SH-SY5Y cell lines. Moreover, the pharmacokinetic and pharmacodynamic effects of 7,8-DHF at doses of 1 and 50 mg/kg were examined in mice after i.v and oral administration, respectively. The poor pharmacokinetic properties and lack of observed activation of TrkB-dependent signaling in the brain confirmed that 7,8-DHF is not a relevant tool for studying TrkB activation in vivo. The binding profile for 133 molecular targets revealed a significant lack of selectivity of 7,8-DHF, suggesting a distinct functional profile independent of interaction with TrkB. Additionally, a compound library was screened in search of novel low-molecular-weight orthosteric TrkB agonists; however, we were not able to identify reliable drug candidates. Our results suggest that published reference compounds including 7,8-DHF do not activate TrkB, consistent with canonical dogma, which indicates that the reported pharmacological activity of these compounds should be interpreted carefully in a broad functional context.

11.
Mol Pharmacol ; 100(4): 335-347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349026

RESUMO

G protein-coupled receptor (GPR) 40 is a free fatty acid receptor mainly expressed in pancreatic ß-cells activated by medium- and long-chain fatty acids and regulating insulin secretion via an increase in cytosolic free calcium ([Ca2+]i). Activation of GPR40 in pancreatic ß-cells may improve glycemic control in type 2 diabetes through enhancement of glucose-stimulated insulin secretion. However, the most clinically advanced GPR40 agonist-TAK-875 (fasiglifam)-was withdrawn from phase III because of its hepatotoxicity resulting from the inhibition of pivotal bile acid transporters. Here, we present a new, potent CPL207280 agonist and compare it with fasiglifam in numerous in vitro and in vivo studies. CPL207280 showed greater potency than fasiglifam in a Ca2+ influx assay with a human GPR40 protein (EC50 = 80 vs. 270 nM, respectively). At the 10 µM concentration, it showed 3.9 times greater enhancement of glucose-stimulated insulin secretion in mouse MIN6 pancreatic ß-cells. In Wistar Han rats and C57BL6 mice challenged with glucose, CPL207280 stimulated 2.5 times greater insulin secretion without causing hypoglycemia at 10 mg/kg compared with fasiglifam. In three diabetic rat models, CPL207280 improved glucose tolerance and increased insulin area under the curve by 212%, 142%, and 347%, respectively. Evaluation of potential off-target activity (Safety47) and selectivity of CPL207280 (at 10 µM) did not show any significant off-target activity. We conclude that CPL207280 is a potent enhancer of glucose-stimulated insulin secretion in animal disease models with no risk of hypoglycemia at therapeutic doses. Therefore, we propose the CPL207280 compound as a compelling candidate for type 2 diabetes treatment. SIGNIFICANCE STATEMENT: GPR40 is a well-known and promising target for diabetes. This study is the first to show the safety and effects of CPL207280, a novel GPR40/free fatty acid receptor 1 agonist, on glucose homeostasis both in vitro and in vivo in different diabetic animal models. Therefore, we propose the CPL207280 compound as a novel, glucose-lowering agent, overcoming the unmet medical needs of patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzofuranos/química , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ratos Zucker , Sulfonas/química , Sulfonas/farmacologia , Sulfonas/uso terapêutico
12.
J Pharmacol Sci ; 145(4): 340-348, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33712286

RESUMO

Systemic lupus erythematosus is a chronic inflammatory disease, in which treatment is still limited due to suboptimal efficacy and toxicities associated with the available therapies. JAK kinases are well known to play an important role in systemic lupus erythematous. There is growing evidence that ROCK kinases are also important in disease development. In this paper, we present the results of the development of CPL409116, a dual JAK and ROCK inhibitor. The studies we performed demonstrate that this molecule is an effective JAK and ROCK inhibitor which efficiently blocks disease progression in NZBWF1/J mouse models of systemic lupus erythematous.


Assuntos
Inibidores de Janus Quinases/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/enzimologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inibidores de Janus Quinases/farmacologia , Janus Quinases/fisiologia , Camundongos Transgênicos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Resultado do Tratamento , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/fisiologia
13.
Eur J Med Chem ; 210: 112990, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199155

RESUMO

The FGFR family is characterized by four receptors (FGFR 1-4), binding to 18 ligands called fibroblast growth factors (FGFs). Aberrant activation of FGFs and their FGFRs has been implicated in a broad spectrum of human tumors. We employed the scaffolds hybridization approach, scaffold-hopping concept to synthesize a series of novel pyrazole-benzimidazole derivatives 56 (a-x). Compound 56q (CPL304110) was identified as a selective and potent pan-FGFR inhibitor for FGFR1, -2, -3 with IC50s of 0.75 nM, 0.50 nM, 3.05 nM respectively, whereas IC50 of 87.90 nM for FGFR4. Due to its favorable pharmacokinetic profile, low toxicity and potent anti-tumor activity in vivo, compound 56q is currently under evaluation in phase I clinical trial for the treatment of bladder, gastric and squamous cell lung cancers (01FGFR2018; NCT04149691).


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Proliferação de Células/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
14.
PLoS One ; 15(7): e0236159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702053

RESUMO

Asthma is a common chronic inflammatory disease. Although effective asthma therapies are available, part of asthmatic population do not respond to these treatment options. In this work we present the result of development of CPL302-253 molecule, a selective PI3Kδ inhibitor. This molecule is intended to be a preclinical candidate for dry powder inhalation in asthma treatment. Studies we performed showed that this molecule is safe and effective PI3Kδ inhibitor that can impact many immune functions. We developed a short, 15-day HDM induced asthma mouse model, in which we showed that CPL302-253 is able to block inflammatory processes leading to asthma development in vivo.


Assuntos
Antiasmáticos/administração & dosagem , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Asma/prevenção & controle , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Administração por Inalação , Animais , Antiasmáticos/uso terapêutico , Linhagem Celular , Inaladores de Pó Seco , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos
15.
Eur J Med Chem ; 185: 111857, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734022

RESUMO

A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.


Assuntos
Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Triptaminas/farmacologia , Animais , Antidepressivos/síntese química , Antidepressivos/química , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Ligantes , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Triptaminas/síntese química , Triptaminas/química , Células Tumorais Cultivadas
16.
Int J Cancer ; 147(4): 1117-1130, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31863596

RESUMO

Targeting of the TRAIL-DR4/5 pathway was proposed as a promising approach for specific induction of apoptosis in cancer cells. Clinical trials, however, showed inadequate efficiency of TRAIL as a monotherapy. It is a widely held view that the application of multifunctional molecules or combination therapy may lead to substantial improvement. Here, we demonstrate the effectiveness and safety of a novel chimeric protein, AD-O51.4, which is a TRAIL equipped with positively charged VEGFA-derived effector peptides. The study was performed in multiple cancer cell line- and patient-derived xenografts. A pharmacokinetic profile was established in monkeys. AD-O51.4 strongly inhibits tumor growth, even leading to complete long-term tumor remission. Neither mice nor monkeys treated with AD-O51.4 demonstrate symptoms of drug toxicity. AD-O51.4 exhibits a satisfactory half-life in plasma and accumulates preferentially in tumors. The cellular mechanism of AD-O51.4 activity involves both cytotoxic effects in tumor cells and antiangiogenic effects on the endothelium. The presence of DRs in cancer cells is crucial for AD-O51.4-driven apoptosis execution. The TRAIL component of the fusion molecule serves as an apoptosis inducer and a cellular anchor for the effector peptides in TRAIL-sensitive and TRAIL-resistant cancer cells, respectively. The FADD-dependent pathway, however, seems to be not indispensable in death signal transduction; thus, AD-O51.4 is capable of bypassing the refractoriness of TRAIL. AD-O51.4-driven cell death, which exceeds TRAIL activity, is achieved due to the N-terminally fused polypeptide, containing VEGFA-derived effector peptides. The high anticancer efficiency of AD-O51.4 combined with its safety has led to the entry of AD-O51.4 into toxicological studies.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Células A549 , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Camundongos SCID , Neoplasias/patologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carga Tumoral/efeitos dos fármacos
17.
Eur J Med Chem ; 179: 1-15, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229883

RESUMO

A new strategy in the design of aminergic GPCR ligands is proposed - the use of aromatic, heterocyclic basic moieties in place of the evergreen piperazine or alicyclic and aliphatic amines. This hypothesis has been tested using a benchmark series of 5-HT6R antagonists obtained by coupling variously substituted 2-aminoimidazole moieties to the well established 1-benzenesulfonyl-1H-indoles, which served as the ligands cores. The crystallographic studies revealed that upon protonation, the 2-aminoimidazole fragment triggers a resonance driven conformational change leading to a form of higher affinity. This molecular switch may be responsible for the observed differences in 5-HT6R activity of the studied chemotypes with different amine-like fragments. Considering the multiple functionalization sites of the embedded guanidine fragment, diverse libraries were constructed, and the relationships between the structure and activity, metabolic stability, and solubility were established. Compounds from the N-(1H-imidazol-2-yl)acylamide chemotype (10a-z) exhibited high affinity for 5-HT6R and very high selectivity over 5-HT1A, 5-HT2A, 5-HT7 and D2 receptors (negligible binding), which was attributed to their very weak basicity. The lead compound in the series 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine (9i) was shown to reverse the cognitive impairment caused by the administration of scopolamine in rats indicating procognitive potential.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Desenho de Fármacos , Imidazóis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Células Cultivadas , Disfunção Cognitiva/induzido quimicamente , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Imidazóis/síntese química , Imidazóis/química , Masculino , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Escopolamina/administração & dosagem , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 19(11)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463379

RESUMO

It has been brought to our attention that the affiliation of Dr. Jerzy Pieczykolan at the time when he was responsible for the work described in the paper [...].

19.
Bioorg Med Chem ; 26(12): 3588-3595, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29853337

RESUMO

Based on pyrroloquinoline scaffold bearing 5-HT2C agonists, a series of arylsulfonamide derivatives of 1H-pyrrolo[2,3-f]quinoline and 1H-pyrrolo[3,2-h]quinoline, substituted at position 3 with tetrahydropyridine, were synthesized and evaluated in vitro for their affinity for 5-HT6 receptors. A structure-activity relationship study showed that the 1H-pyrrolo[3,2-h]quinoline scaffold was more favorable for 5-HT6R binding than the 1H-pyrrolo[2,3-f]quinoline one, suggesting dependence upon the type of condensation of the pyrrole and quinoline rings. As revealed by quantum-chemical calculations and molecular dynamic studies, position of the quinoline nitrogen atom in the planar pyrroloquinoline skeleton might affect the spatial orientation of the arylsulfonyl fragment, as a result of structure stabilization by internal hydrogen bonds.


Assuntos
Nitrogênio/química , Pirróis/química , Teoria Quântica , Quinolinas/química , Receptores de Serotonina/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Pirróis/síntese química , Pirróis/metabolismo , Quinolinas/síntese química , Quinolinas/metabolismo , Receptores de Serotonina/química , Relação Estrutura-Atividade
20.
Protein Eng Des Sel ; 31(2): 37-46, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361050

RESUMO

The TNF-Related Apoptosis Inducing Ligand (TRAIL) cytokine triggers apoptosis specifically in cancer cells. Susceptibility of a given cell to TRAIL depends on the activity of regulatory proteins, one of the most important of which is BID. The aim of this study was to increase the cytotoxic potential of TRAIL against cancer cells. TRAIL was fused to the BH3 domain of BID. Hence, TRAIL acted not only as an anticancer agent, but also as a specific carrier for the BID fragment. Two fusion protein variants were obtained by genetic engineering, harboring two different linker sequences. The short linker allowed both parts of the fusion protein to fold into their native structures. The long linker influenced the structure of the fused proteins but nonetheless resulted in their highest cytotoxic activity. Optimal buffer formulation was determined for all the analyzed TRAIL variants. Fusing the BH3 domain of BID to TRAIL improved the cytotoxic potential of TRAIL. Further, these findings may be useful for the optimization of other anticancer drugs based on TRAIL, since the appropriate formulation would secure their native structures during prolonged storage.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Citotoxinas , Proteínas Recombinantes de Fusão , Ligante Indutor de Apoptose Relacionado a TNF , Células A549 , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/biossíntese , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/isolamento & purificação , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/farmacologia , Citotoxinas/biossíntese , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Células Hep G2 , Humanos , Domínios Proteicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/isolamento & purificação , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA