Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 227(6): 1790-1803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557686

RESUMO

The long-lived tree species Eschweilera tenuifolia (O. Berg) Miers is characteristic of oligotrophic Amazonian black-water floodplain forests (igapó), seasonally inundated up to 10 months per year, often forming monodominant stands. We investigated E. tenuifolia' growth and mortality patterns in undisturbed (Jaú National Park - JNP) and disturbed igapós (Uatumã Sustainable Development Reserve - USDR, downstream of the Balbina hydroelectric dam). We analysed age-diameter relationships, basal area increment (BAI) through 5-cm diameter classes, growth changes and growth ratios preceding death, BAI clustering, BAI ratio, and dated the individual year of death (14 C). Growth and mortality patterns were then related to climatic or anthropogenic disturbances. Results were similar for both populations for estimated maximum ages (JNP, 466 yr; USDR, 498 yr, except for one USDR tree with an estimated age of 820 yr) and slightly different for mean diameter increment (JNP: 2.04 mm; USDR: 2.28 mm). Living trees from JNP showed altered growth post-1975 and sparse tree mortality occurred at various times, possibly induced by extreme hydroclimatic events. In contrast with the JNP, abrupt growth changes and massive mortality occurred in the USDR after the dam construction began (1983). Even more than 30 yr after dam construction, flood-pulse alteration continues to affect both growth and mortality of E. tenuifolia. Besides its vulnerability to anthropogenic disturbances, this species is also susceptible to long-lasting dry and wet periods induced by climatic events, the combination of both processes may cause its local and regional extinction.


Assuntos
Inundações , Árvores , Florestas
3.
PLoS One ; 12(4): e0175003, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394937

RESUMO

Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that environmental conditions in many wetlands are not homogeneous with respect to regional climate, and that responses of wetland tree communities to future climate change may lag behind that of non-wetland, terrestrial habitat.


Assuntos
Clima , Água Doce , Árvores , Áreas Alagadas , Biodiversidade , Brasil , Análise por Conglomerados , Florestas , Chuva , Análise de Regressão , Temperatura
4.
PLoS One ; 10(4): e0122542, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837281

RESUMO

Matupás are floating vegetation islands found in floodplain lakes of the central Brazilian Amazon. They form initially from the agglomeration of aquatic vegetation, and through time can accumulate a substrate of organic matter sufficient to grow forest patches of several hectares in area and up to 12 m in height. There is little published information on matupás despite their singular characteristics and importance to local fauna and people. In this study we document the traditional ecological knowledge of riverine populations who live near and interact with matupás. We expected that their knowledge, acquired through long term observations and use in different stages of the matupá life cycle, could help clarify various aspects about the ecology and natural history of these islands that field biologists may not have had the opportunity to observe. Research was carried out in five riverine communities of the Amanã Sustainable Development Reserve (Brazil). Semi-structured interviews were conducted with 45 inhabitants in order to register local understandings of how matupás are formed, biotic/abiotic factors related to their occurrence, the plants and animals that occur on them, their ecological relevance, and local uses. Local people elucidated several little-known aspects about matupá ecology, especially regarding the importance of seasonal dynamics of high/low water for matupás formation and the relevance of these islands for fish populations. Soil from matupás is especially fertile and is frequently gathered for use in vegetable gardens. In some cases, crops are planted directly onto matupás, representing an incipient agricultural experiment that was previously undocumented in the Amazon. Matupás are also considered a strategic habitat for fishing, mainly for arapaima (Arapaima gigas). The systematic study of traditional ecological knowledge proved to be an important tool for understanding this little-known Amazonian landscape.


Assuntos
Florestas , Ilhas , Animais , Brasil , Conservação dos Recursos Naturais , Ecossistema , Peixes , Conhecimento , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA