Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Mol Pharm ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805365

RESUMO

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.

2.
Protein Sci ; 33(6): e5013, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808964

RESUMO

Many small globular proteins exist in only two states-the physiologically relevant folded state and an inactive unfolded state. The active state is stabilized by numerous weak attractive contacts, including hydrogen bonds, other polar interactions, and the hydrophobic effect. Knowledge of these interactions is key to understanding the fundamental equilibrium thermodynamics of protein folding and stability. We focus on one such interaction, that between amide and aromatic groups. We provide a statistically convincing case for quantitative, linear entropy-enthalpy compensation in forming aromatic-amide interactions using published model compound transfer-free energy data.


Assuntos
Entropia , Proteínas , Proteínas/química , Proteínas/metabolismo , Termodinâmica , Dobramento de Proteína , Modelos Moleculares , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Amidas/química , Amidas/metabolismo
3.
Chem Rev ; 124(9): 5668-5694, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38635951

RESUMO

Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.


Assuntos
Dessecação , Géis , Proteínas , Proteínas/química , Proteínas/metabolismo , Géis/química , Vidro/química , Humanos , Água/química
4.
Biomol NMR Assign ; 17(2): 235-238, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632688

RESUMO

Adenylate kinase reversibly catalyzes the conversion of ATP plus AMP to two ADPs. This essential catalyst is present in every cell, and the Escherichia coli protein is often employed as a model enzyme. Our aim is to use the E. coli enzyme to understand dry protein structure and protection. Here, we report the expression, purification, steady-state assay, NMR conditions and 1H, 13C, 15N backbone resonance NMR assignments of its C77S variant. These data will also help others utilize this prototypical enzyme.


Assuntos
Adenilato Quinase , Escherichia coli , Escherichia coli/metabolismo , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética
5.
Protein Sci ; 32(8): e4716, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401908

RESUMO

The cosolvent 2,2,2-trifluoroethanol (TFE) is often used to mimic protein desiccation. We assessed the effects of TFE on cytosolic abundant heat soluble protein D (CAHS D) from tardigrades. CAHS D is a member of a unique protein class that is necessary and sufficient for tardigrades to survive desiccation. We find that the response of CAHS D to TFE depends on the concentration of both species. Dilute CAHS D remains soluble and, like most proteins exposed to TFE, gains α-helix. More concentrated solutions of CAHS D in TFE accumulate ß-sheet, driving both gel formation and aggregation. At even higher TFE and CAHS D concentrations, samples phase separate without aggregation or increases in helix. Our observations show the importance of considering protein concentration when using TFE.


Assuntos
Tardígrados , Trifluoretanol , Animais , Trifluoretanol/farmacologia , Dessecação , Estrutura Secundária de Proteína , Proteínas/metabolismo , Tardígrados/metabolismo , Dicroísmo Circular
6.
Biophys J ; 122(12): 2500-2505, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37149732

RESUMO

Lyophilization is promising for tackling degradation during the drying and storage of protein-based drugs. Tardigrade cytosolically abundant heat soluble (CAHS) proteins are necessary and sufficient for desiccation-tolerance in vivo and protein protection in vitro. Hydrated CAHS proteins form coiled-coil-based fine-stranded, cold-setting hydrogels, but the dried protein remains largely uncharacterized. Here, we show that dried CAHS D gels (i.e., aerogels) retain the structural units of their hydrogels, but the details depend on prelyophilization CAHS concentrations. Low concentration samples (<10 g/L) form thin (<0.2 µm) tangled fibrils lacking regular structure on the micron scale. Upon increasing the concentration, the fibers thicken and form slabs comprising the walls of the aerogel pores. These changes in morphology are associated with a loss in disorder and an increase in large ß sheets and a decrease in α helices and random coils. This disorder-to-order transition is also seen in hydrated gels as a function of concentration. These results suggest a mechanism for pore formation and indicate that using CAHS proteins as excipients will require attention to initial conditions because the starting concentration impacts the lyophilized product.


Assuntos
Dessecação , Tardígrados , Animais , Dessecação/métodos , Proteínas/metabolismo , Tardígrados/metabolismo , Liofilização , Hidrogéis
7.
J Phys Chem Lett ; 14(10): 2599-2605, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36881386

RESUMO

Most efforts to understand macromolecular crowding focus on global (i.e., complete) unfolding, but smaller excursions, often called breathing, promote aggregation, which is associated with several diseases and the bane of pharmaceutical and commercial protein production. We used NMR to assess the effects of ethylene glycol (EG) and polyethylene glycols (PEGs) on the structure and stability of the B1 domain of protein G (GB1). Our data show that EG and PEGs stabilize GB1 differently. EG interacts with GB1 more strongly than PEGs, but neither affects the structure of the folded state. EG and 12000 g/mol PEG stabilize GB1 more than PEGs of intermediate size, but EG and smaller PEGs stabilize GB1 enthalpically while the largest PEG acts entropically. Our key finding is that PEGs turn local unfolding into global unfolding, and meta-analysis of published data supports this conclusion. These efforts provide knowledge that can be applied to improve biological drugs and commercial enzymes.


Assuntos
Polietilenoglicóis , Proteínas , Polietilenoglicóis/química , Substâncias Macromoleculares
8.
Biochemistry ; 62(7): 1330, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36913527
9.
Biochemistry ; 62(5): 1044-1052, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802580

RESUMO

Extremotolerant organisms and industry exploit sugars as desiccation protectants, with trehalose being widely used by both. How sugars, in general, and the hydrolytically stable sugar trehalose, in particular, protect proteins is poorly understood, which hinders the rational design of new excipients and implementation of novel formulations for preserving lifesaving protein drugs and industrial enzymes. We employed liquid-observed vapor exchange nuclear magnetic resonance (LOVE NMR), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) to show how trehalose and other sugars protect two model proteins: the B1 domain of streptococcal protein G (GB1) and truncated barley chymotrypsin inhibitor 2 (CI2). Residues with intramolecular H-bonds are most protected. The LOVE NMR and DSC data indicate that vitrification may be protective. Combining LOVE NMR and TGA data shows that water retention is not important. Our data suggest that sugars protect protein structure as they dry by strengthening intraprotein H-bonds and water replacement and that trehalose is the stress-tolerance sugar of choice because of its covalent stability.


Assuntos
Açúcares , Trealose , Trealose/química , Proteínas/química , Carboidratos/química , Água , Varredura Diferencial de Calorimetria
10.
J Biol Chem ; 299(3): 102984, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739945

RESUMO

Biophysical characterization of protein-protein interactions involving disordered proteins is challenging. A common simplification is to measure the thermodynamics and kinetics of disordered site binding using peptides containing only the minimum residues necessary. We should not assume, however, that these few residues tell the whole story. Son of sevenless, a multidomain signaling protein from Drosophila melanogaster, is critical to the mitogen-activated protein kinase pathway, passing an external signal to Ras, which leads to cellular responses. The disordered 55 kDa C-terminal domain of Son of sevenless is an autoinhibitor that blocks guanidine exchange factor activity. Activation requires another protein, Downstream of receptor kinase (Drk), which contains two Src homology 3 domains. Here, we utilized NMR spectroscopy and isothermal titration calorimetry to quantify the thermodynamics and kinetics of the N-terminal Src homology 3 domain binding to the strongest sites incorporated into the flanking disordered sequences. Comparing these results to those for isolated peptides provides information about how the larger domain affects binding. The affinities of sites on the disordered domain are like those of the peptides at low temperatures but less sensitive to temperature. Our results, combined with observations showing that intrinsically disordered proteins become more compact with increasing temperature, suggest a mechanism for this effect.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas Intrinsicamente Desordenadas , Animais , Sítios de Ligação , Drosophila melanogaster/metabolismo , Entropia , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/metabolismo , Ligação Proteica , Domínios de Homologia de src , Temperatura , Proteína Son Of Sevenless de Drosófila/química , Proteínas de Drosophila/química
11.
Protein Sci ; 32(3): e4573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691735

RESUMO

Proteins in the cellular milieu reside in environments crowded by macromolecules and other solutes. Although crowding can significantly impact the protein folded state stability, most experiments are conducted in dilute buffered solutions. To resolve the effect of crowding on protein stability, we use 19 F nuclear magnetic resonance spectroscopy to follow the reversible, two-state unfolding thermodynamics of the N-terminal Src homology 3 domain of the Drosophila signal transduction protein drk in the presence of polyethylene glycols (PEGs) of various molecular weights and concentrations. Contrary to most current theories of crowding that emphasize steric protein-crowder interactions as the main driving force for entropically favored stabilization, our experiments show that PEG stabilization is accompanied by significant heat release, and entropy disfavors folding. Using our newly developed model, we find that stabilization by ethylene glycol and small PEGs is driven by favorable binding to the folded state. In contrast, for larger PEGs, chemical or soft PEG-protein interactions do not play a significant role. Instead, folding is favored by excluded volume PEG-protein interactions and an exothermic nonideal mixing contribution from release of confined PEG and water upon folding. Our results indicate that crowding acts through molecular interactions subtler than previously assumed and that interactions between solution components with both the folded and unfolded states must be carefully considered.


Assuntos
Polietilenoglicóis , Proteínas , Animais , Proteínas/química , Substâncias Macromoleculares/química , Termodinâmica , Polietilenoglicóis/química , Espectroscopia de Ressonância Magnética , Drosophila , Dobramento de Proteína
12.
Protein Sci ; 31(12): e4495, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335581

RESUMO

Protein-based pharmaceuticals are increasingly important, but their inherent instability necessitates a "cold chain" requiring costly refrigeration during production, shipment, and storage. Drying can overcome this problem, but most proteins need the addition of stabilizers, and some cannot be successfully formulated. Thus, there is a need for new, more effective protective molecules. Cytosolically, abundant heat-soluble proteins from tardigrades are both fundamentally interesting and a promising source of inspiration; these disordered, monodisperse polymers form hydrogels whose structure may protect client proteins during drying. We used attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, and small-amplitude oscillatory shear rheometry to characterize gelation. A 5% (wt/vol) gel has a strength comparable with human skin, and melts cooperatively and reversibly near body temperature with an enthalpy comparable with globular proteins. We suggest that the dilute protein forms α-helical coiled coils and increasing their concentration drives gelation via intermolecular ß-sheet formation.


Assuntos
Dessecação , Tardígrados , Humanos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estrutura Secundária de Proteína , Varredura Diferencial de Calorimetria , Proteínas
13.
Commun Biol ; 5(1): 798, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945337

RESUMO

α-Synuclein (α-syn) is the main protein component of Lewy bodies, the major pathological hallmarks of Parkinson's disease (PD). C-terminally truncated α-syn is found in the brain of PD patients, reduces cell viability and tends to form fibrils. Nevertheless, little is known about the mechanisms underlying the role of C-terminal truncation on the cytotoxicity and aggregation of α-syn. Here, we use nuclear magnetic resonance spectroscopy to show that the truncation alters α-syn conformation, resulting in an attractive interaction of the N-terminus with membranes and molecular chaperone, protein disulfide isomerase (PDI). The truncated protein is more toxic to mitochondria than full-length protein and diminishes the effect of PDI on α-syn fibrillation. Our findings reveal a modulatory role for the C-terminus in the cytotoxicity and aggregation of α-syn by interfering with the N-terminus binding to membranes and chaperone, and provide a molecular basis for the pathological role of C-terminal truncation in PD pathogenesis.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Humanos , Corpos de Lewy/patologia , Chaperonas Moleculares/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
14.
Protein Sci ; 31(5): e4288, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481639

RESUMO

When exposed to desiccation stress, extremotolerant organisms from all domains of life produce protective disordered proteins with the potential to inform the design of excipients for formulating biologics and industrial enzymes. However, the mechanism(s) of desiccation protection remain largely unknown. To investigate the role of water sorption in desiccation protection, we use thermogravimetric analysis to study water adsorption by two desiccation-tolerance proteins, cytosolic abundant heat soluble protein D from tardigrades and late embryogenesis abundant protein 4 from the anhydrobiotic midge Polypedilum vanderplanki, and, as a control, the globular B1 domain of staphylococcal protein G. All samples adsorb similar amounts of water, suggesting that modulated water retention is not responsible for dehydration protection by desiccation-tolerance proteins.


Assuntos
Chironomidae , Tardígrados , Animais , Chironomidae/metabolismo , Dessecação , Proteínas/metabolismo , Tardígrados/metabolismo , Água/metabolismo
15.
Annu Rev Biophys ; 51: 267-300, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239418

RESUMO

Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.


Assuntos
Polímeros , Proteínas , Substâncias Macromoleculares/química , Estabilidade Proteica , Proteínas/química , Termodinâmica
16.
Biochemistry ; 61(6): 409-412, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35188746

RESUMO

The high concentration of macromolecules in cells affects the stability of proteins and protein complexes via hard repulsions and chemical interactions, yet few studies have focused on chemical interactions. We characterized the domain-swapped dimer of the B1 domain of protein G in buffer and Escherichia coli cells by using heteronuclear, multidimensional nuclear magnetic resonance spectroscopy. In buffer, the monomer is a partially folded molten globule, but that species is not observed in cells. Experiments using urea suggest that the monomer is unfolded in cells, but again, the molten-globule form of the monomer is absent. The data suggest that attractive chemical interactions in the cytoplasm unfold the molten globule. We conclude that the intracellular environment not only modulates the stability of protein complexes but also can change the species present, reinforcing the idea that chemical interactions are more important than hard repulsions in cells.


Assuntos
Polímeros , Proteínas , Dicroísmo Circular , Substâncias Macromoleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Ureia
18.
Protein Sci ; 31(2): 396-406, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34766407

RESUMO

Extremotolerant organisms from all domains of life produce protective intrinsically disordered proteins (IDPs) in response to desiccation stress. In vitro, many of these IDPs protect enzymes from dehydration stress better than U.S. Food and Drug Administration-approved excipients. However, as with most excipients, their protective mechanism is poorly understood. Here, we apply thermogravimetric analysis, differential scanning calorimetry, and liquid-observed vapor exchange (LOVE) NMR to study the protection of two model globular proteins (the B1 domain of staphylococcal protein G [GB1] and chymotrypsin inhibitor 2 [CI2]) by two desiccation-tolerance proteins (CAHS D from tardigrades and PvLEA4 from an anhydrobiotic midge), as well as by disordered and globular protein controls. We find that all protein samples retain similar amounts of water and possess similar glass transition temperatures, suggesting that neither enhanced water retention nor vitrification is responsible for protection. LOVE NMR reveals that IDPs protect against dehydration-induced unfolding better than the globular protein control, generally protect the same regions of GB1 and CI2, and protect GB1 better than CI2. These observations suggest that electrostatic interactions, charge patterning, and expanded conformations are key to protection. Further application of LOVE NMR to additional client proteins and protectants will deepen our understanding of dehydration protection, enabling the streamlined production of dehydrated proteins for expanded use in the medical, biotechnology, and chemical industries.


Assuntos
Proteínas Intrinsicamente Desordenadas , Tardígrados , Animais , Dessecação , Humanos , Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética , Tardígrados/metabolismo , Água
19.
Biochemistry ; 60(41): 3041-3045, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34596383

RESUMO

Water is essential to protein structure and stability, yet our understanding of how water shapes proteins is far from thorough. Our incomplete knowledge of protein-water interactions is due in part to a long-standing technological inability to assess experimentally how water removal impacts local protein structure. It is now possible to obtain residue-level information on dehydrated protein structures via liquid-observed vapor exchange (LOVE) NMR, a solution NMR technique that quantifies the extent of hydrogen-deuterium exchange between unprotected amide protons of a dehydrated protein and D2O vapor. Here, we apply LOVE NMR, Fourier transform infrared spectroscopy, and solution hydrogen-deuterium exchange to globular proteins GB1, CI2, and two variants thereof to link mutation-induced changes in the dehydrated protein structure to changes in solution structure and stability. We find that a mutation that destabilizes GB1 in solution does not affect its dehydrated structure, whereas a mutation that stabilizes CI2 in solution makes several regions of the protein more susceptible to dehydration-induced unfolding, suggesting that water is primarily responsible for the destabilization of the GB1 variant but plays a stabilizing role in the CI2 variant. Our results indicate that changes in dehydrated protein structure cannot be predicted from changes in solution stability alone and demonstrate the ability of LOVE NMR to uncover the variable role of water in protein stability. Further application of LOVE NMR to other proteins and their variants will improve the ability to predict and modulate protein structure and stability in both the hydrated and dehydrated states for applications in medicine and biotechnology.


Assuntos
Proteínas de Bactérias/química , Peptídeos/química , Proteínas de Plantas/química , Água/química , Proteínas de Bactérias/genética , Hordeum/química , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/genética , Proteínas de Plantas/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Staphylococcus/química
20.
Biochemistry ; 60(46): 3436-3440, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33939915

RESUMO

Fifty-five years ago, Norman Good and colleagues authored a paper that fundamentally advanced wet biochemistry [Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., and Singh, R. M. M. (1966) Hydrogen ion buffers for biological research. Biochemistry 5, 467-477] and in doing so has amassed more than 2500 citations. They laid out the properties required for useful, biochemically relevant hydrogen-ion buffers and then synthesized and tested 10 of them. Soon after, these buffers became commercially available. Since then, most of us never gave them a second thought. We just use them. Here, I discuss some of the background regarding the genesis of "Good's buffers", make a few (disparaging) observations about the non-Good's buffer, Tris, and suggest that we synthesize new buffers by combining the ideas of Good et al. with results from the past 60 years of protein chemistry.


Assuntos
Bioquímica/métodos , Soluções Tampão , Bioquímica/história , Calorimetria/métodos , História do Século XX , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA