Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(28): 6470-6476, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37436849

RESUMO

Recent scientific interest in examining the bandgap evolution of a MAPbI3 hybrid perovskite by applying hydrostatic pressure has mostly focused on a room-temperature tetragonal phase. In contrast, the pressure response of a low-temperature orthorhombic phase (OP) of MAPbI3 has not been explored and understood. In this research, we investigate for the first time how hydrostatic pressure alters the electronic landscape of the OP of MAPbI3. Pressure studies using photoluminescence combined with calculations within density functional theory at zero temperature allowed us to identify the main physical factors affecting the bandgap evolution of the OP of MAPbI3. The negative bandgap pressure coefficient was found to be strongly dependent on the temperature (α120K = -13.3 ± 0.1 meV/GPa, α80K = -29.8 ± 0.1 meV/GPa, and α40K = -36.3 ± 0.1 meV/GPa). Such dependence is related to the changes in the Pb-I bond length and geometry in the unit cell as the atomic configuration approaches the phase transition as well as the increasing phonon contribution to octahedral tilting as the temperature increases.

2.
Chem Mater ; 34(22): 10104-10112, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439319

RESUMO

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA