Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746414

RESUMO

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

2.
Viruses ; 15(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37515226

RESUMO

Influenza B virus (IBV) contributes to substantial influenza-mediated morbidity and mortality, particularly among children. Similar to influenza A viruses (IAV), the hemagglutinin (HA) and neuraminidase (NA) of IBV undergo antigenic drift, necessitating regular reformulation of seasonal influenza vaccines. NA inhibitors, such as oseltamivir, have reduced activity and clinical efficacy against IBV, while M2 channel inhibitors are only effective against IAV, highlighting the need for improved vaccine and therapeutics for the treatment of seasonal IBV infections. We have previously described a potent human monoclonal antibody (hMAb), 1092D4, that is specific for IBV NA and neutralizes a broad range of IBVs. The anti-viral activity of MAbs can include direct mechanisms such as through neutralization and/or Fc-mediated effector functions that are dependent on accessory cells expressing Fc receptors and that could be impacted by potential host-dependent variability. To discern if the in vivo efficacy of 1092D4 was dependent on Fc-effector function, 1092D4 hMAb with reduced ability to bind to Fc receptors (1092D4-LALAPG) was generated and tested. 1092D4-LALAPG had comparable in vitro binding, neutralization, and inhibition of NA activity to 1092D4. 1092D4-LALAPG was effective at protecting against a lethal challenge of IBV in mice. These results suggest that hMAb 1092D4 in vivo activity is minimally dependent on Fc-effector functions, a characteristic that may extend to other hMAbs that have potent NA inhibition activity.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Criança , Animais , Camundongos , Humanos , Anticorpos Amplamente Neutralizantes , Neuraminidase , Anticorpos Antivirais , Vírus da Influenza B , Anticorpos Monoclonais/farmacologia , Receptores Fc , Glicoproteínas de Hemaglutininação de Vírus da Influenza
3.
AIDS Res Hum Retroviruses ; 39(7): 350-366, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762930

RESUMO

The most potent and broad HIV envelope (Env)-specific antibodies often when reverted to their inferred germline versions representing the naive B cell receptor, fail to bind Env, suggesting that the initial responding B cell population not only exclusively comprises a naive population, but also a pre-existing cross-reactive antigen-experienced B cell pool that expands following Env exposure. Previously we isolated gp120-reactive monoclonal antibodies (mAbs) from participants in HVTN 105, an HIV vaccine trial. Using deep sequencing, focused on immunoglobulin G (IgG), IgA, and IgM, VH-lineage tracking, we identified four of these mAb lineages in pre-immune peripheral blood. We also looked through the ∼7 month postvaccination bone marrow, and interestingly, several of these lineages that were found in prevaccination blood were still persistent in the postvaccination bone marrow, including the CD138+ long-lived plasma cell compartment. The majority of the pre-immune lineage members included IgM, however, IgG and IgA members were also prevalent and exhibited somatic hypermutation. These results suggest that vaccine-induced gp120-specific antibody lineages originate from both naive and cross-reactive memory B cells. ClinicalTrials.gov NCT02207920.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Vacinação , Proteína gp120 do Envelope de HIV , Imunoglobulina G , Anticorpos Monoclonais , Imunoglobulina A , Imunoglobulina M , Anticorpos Neutralizantes
4.
PLoS Pathog ; 18(7): e1010691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862475

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Redução de Peso
5.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291292

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.

6.
J Virol ; 95(22): e0112621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34495697

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and has been responsible for the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Prophylactic vaccines have been authorized by the U.S. Food and Drug Administration (FDA) for the prevention of COVID-19. Identification of SARS-CoV-2-neutralizing antibodies (NAbs) is important to assess vaccine protection efficacy, including their ability to protect against emerging SARS-CoV-2 variants of concern (VoC). Here, we report the generation and use of a recombinant (r)SARS-CoV-2 USA/WA1/2020 (WA-1) strain expressing Venus and an rSARS-CoV-2 strain expressing mCherry and containing mutations K417N, E484K, and N501Y found in the receptor binding domain (RBD) of the spike (S) glycoprotein of the South African (SA) B.1.351 (beta [ß]) VoC in bifluorescent-based assays to rapidly and accurately identify human monoclonal antibodies (hMAbs) able to neutralize both viral infections in vitro and in vivo. Importantly, our bifluorescent-based system accurately recapitulated findings observed using individual viruses. Moreover, fluorescent-expressing rSARS-CoV-2 strain and the parental wild-type (WT) rSARS-CoV-2 WA-1 strain had similar viral fitness in vitro, as well as similar virulence and pathogenicity in vivo in the K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 infection. We demonstrate that these new fluorescent-expressing rSARS-CoV-2 can be used in vitro and in vivo to easily identify hMAbs that simultaneously neutralize different SARS-CoV-2 strains, including VoC, for the rapid assessment of vaccine efficacy or the identification of prophylactic and/or therapeutic broadly NAbs for the treatment of SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 is responsible of the COVID-19 pandemic that has warped daily routines and socioeconomics. There is still an urgent need for prophylactics and therapeutics to treat SARS-CoV-2 infections. In this study, we demonstrate the feasibility of using bifluorescent-based assays for the rapid identification of hMAbs with neutralizing activity against SARS-CoV-2, including VoC in vitro and in vivo. Importantly, results obtained with these bifluorescent-based assays recapitulate those observed with individual viruses, demonstrating their feasibility to rapidly advance our understanding of vaccine efficacy and to identify broadly protective human NAbs for the therapeutic treatment of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/terapia , COVID-19/virologia , Genes Reporter , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Cell Rep Med ; 2(3): 100218, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649747

RESUMO

SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein receptor binding domain, neutralizes SARS-CoV-2, and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6 mg/kg, corresponding to 0.03 mg/kg lung-deposited dose, reduced the viral burden below the detection limit and mitigated lung pathology. The therapeutic efficacy of an exceedingly low dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits, as compared to the conventional parenteral route of administration. These results suggest that the clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Administração por Inalação , Animais , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/imunologia , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina M/imunologia , Masculino , Células B de Memória/citologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , Testes de Neutralização , Filogenia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Sci Rep ; 10(1): 13031, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747654

RESUMO

Efficacious HIV-1 vaccination requires elicitation of long-lived antibody responses. However, our understanding of how different vaccine types elicit durable antibody responses is lacking. To assess the impact of vaccine type on antibody responses, we measured IgG isotypes against four consensus HIV antigens from 2 weeks to 10 years post HIV-1 vaccination and used mixed effects models to estimate half-life of responses in four human clinical trials. Compared to protein-boosted regimens, half-lives of gp120-specific antibodies were longer but peak magnitudes were lower in Modified Vaccinia Ankara (MVA)-boosted regimens. Furthermore, gp120-specific B cell transcriptomics from MVA-boosted and protein-boosted vaccines revealed a distinct signature at a peak (2 weeks after last vaccination) including CD19, CD40, and FCRL2-5 activation along with increased B cell receptor signaling. Additional analysis revealed contributions of RIG-I-like receptor pathway and genes such as SMAD5 and IL-32 to antibody durability. Thus, this study provides novel insights into vaccine induced antibody durability and B-cell receptor signaling.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Anticorpos Anti-HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Formação de Anticorpos/imunologia , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica , Meia-Vida , Humanos , Imunização Secundária , Modelos Lineares , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Vacinação , Vaccinia virus/imunologia
9.
Cell Rep Med ; 1(2)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32577626

RESUMO

Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/prevenção & controle , Plasmócitos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Especificidade de Anticorpos , Linhagem da Célula/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Células HEK293 , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Plasmócitos/metabolismo , Plasmócitos/patologia , Plasmócitos/virologia , Células THP-1 , Vacinação
10.
Viruses ; 12(2)2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024281

RESUMO

Although seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift. Previously, we described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrated how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian-produced KPF1-HEK hMAb. KPF1-Antx hMAb showed broad binding to recombinant HA proteins and H1N1 IAV, including A/California/04/2009 (pH1N1) in vitro, which was comparable to that observed with KPF1-HEK hMAb. Importantly, prophylactic administration of KPF1-Antx hMAb to guinea pigs prevented pH1N1 infection and transmission in both prophylactic and therapeutic experiments, substantiating its clinical potential to prevent and treat H1N1 infections. Collectively, this study demonstrated, for the first time, a plant-produced influenza hMAb with in vitro and in vivo activity against influenza virus. Because of the many advantages of plant-produced hMAbs, such as rapid batch production, low cost, and the absence of mammalian cell products, they represent an alternative strategy for the production of immunotherapeutics for the treatment of influenza viral infections, including emerging seasonal and/or pandemic strains.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Planticorpos/uso terapêutico , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Feminino , Cobaias , Infecções por Orthomyxoviridae/terapia , Nicotiana/metabolismo
11.
PLoS One ; 14(9): e0221550, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31504041

RESUMO

HIV envelope protein (Env) is the sole target of broadly neutralizing antibodies (BNAbs) that are capable of neutralizing diverse strains of HIV. While BNAbs develop spontaneously in a subset of HIV-infected patients, efforts to design an envelope protein-based immunogen to elicit broadly neutralizing antibody responses have so far been unsuccessful. It is hypothesized that a primary barrier to eliciting BNAbs is the fact that HIV envelope proteins bind poorly to the germline-encoded unmutated common ancestor (UCA) precursors to BNAbs. To identify variant forms of Env with increased affinities for the UCA forms of BNAbs 4E10 and 10E8, which target the Membrane Proximal External Region (MPER) of Env, libraries of randomly mutated Env variants were expressed in a yeast surface display system and screened using fluorescence activated cell sorting for cells displaying variants with enhanced abilities to bind the UCA antibodies. Based on analyses of individual clones obtained from the screen and on next-generation sequencing of sorted libraries, distinct but partially overlapping sets of amino acid substitutions conferring enhanced UCA antibody binding were identified. These were particularly enriched in substitutions of arginine for highly conserved tryptophan residues. The UCA-binding variants also generally exhibited enhanced binding to the mature forms of anti-MPER antibodies. Mapping of the identified substitutions into available structures of Env suggest that they may act by destabilizing both the initial pre-fusion conformation and the six-helix bundle involved in fusion of the viral and cell membranes, as well as providing new or expanded epitopes with increased accessibility for the UCA antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos , Proteína gp41 do Envelope de HIV/imunologia , Mutação , Precursores de Proteínas/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estabilidade Proteica
12.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862743

RESUMO

Although most seasonal inactivated influenza vaccines (IIV) contain neuraminidase (NA), the extent and mechanisms of action of protective human NA-specific humoral responses induced by vaccination are poorly resolved. Due to the propensity of influenza virus for antigenic drift and shift and its tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to waves of new strains of seasonal viruses and is at risk from viruses with pandemic potential for which limited or no immunity may exist. Here we demonstrate that the use of IIV results in increased levels of influenza B virus (IBV) NA-specific serum antibodies. Detailed analysis of the IBV NA B cell response indicates concurrent expansion of IBV NA-specific peripheral blood plasmablasts 7 days after IIV immunization which express monoclonal antibodies with broad and potent antiviral activity against both IBV Victoria and Yamagata lineages and prophylactic and therapeutic activity in mice. These IBV NA-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results represent the first demonstration that IIV-induced NA human antibodies can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IBV NA-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development.IMPORTANCE Influenza virus infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets such as regions within the influenza neuraminidase protein. We have demonstrated that seasonal immunization stimulates neuraminidase-specific antibodies in humans that are broad and potent in their protection from influenza B virus when tested in mice. These antibodies further persist in the bone marrow, where they are expressed by long-lived antibody-producing cells, referred to here as plasma cells. The significance in our research is the demonstration that seasonal influenza immunization can induce a subset of neuraminidase-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/imunologia , Plasmócitos/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/sangue , Proteção Cruzada , Modelos Animais de Doenças , Voluntários Saudáveis , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/terapia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
13.
Vaccine ; 37(17): 2322-2330, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30926296

RESUMO

Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.


Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Interleucina-33/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/virologia , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
14.
PLoS One ; 13(10): e0205756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335821

RESUMO

As a step toward the development of variant forms of Env with enhanced immunogenic properties, we have expressed the glycoprotein in the yeast surface display system in a form that can be subjected to random mutagenesis followed by screening for forms with enhanced binding to germline antibodies. To optimize the expression and immunogenicity of the yeast-displayed Env protein, we tested different approaches for cell wall anchoring, expression of gp120 and gp140 Env from different viral strains, the effects of introducing mutations designed to stabilize Env, and the effects of procedures for altering N-linked glycosylation of Env. We find that diverse forms of HIV envelope glycoprotein can be efficiently expressed at the yeast cell surface and that gp140 forms of Env are effectively cleaved by Kex2p, the yeast furin protease homolog. Multiple yeast-displayed gp120 and gp140 proteins are capable of binding to antibodies directed against the V3-variable loop, CD4 binding site, and gp41 membrane-proximal regions, including some antibodies whose binding is known to depend on Env conformation and N-linked glycan. Based on antibody recognition and sensitivity to glycosidases, yeast glycosylation patterns partially mimic high mannose-type N-glycosylation in mammalian cells. However, yeast-displayed Env is not recognized by some anti-Env antibodies sensitive to quaternary structure, suggesting either that the displayed protein exists in a monomeric state or that for these antibodies, yeast glycosylation in certain regions hinders recognition or access. Consistent with studies in other systems, reconstructed predicted unmutated precursors to anti-Env antibodies exhibit little affinity for the yeast-displayed envelope protein.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Saccharomyces cerevisiae/virologia , Glicosilação , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Técnicas Imunológicas/métodos , Mutagênese Sítio-Dirigida , Mutação , Pró-Proteína Convertases/metabolismo , Ligação Proteica/imunologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
15.
Sci Rep ; 8(1): 4374, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531320

RESUMO

Influenza's propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/terapia , Animais , Humanos , Imunidade Humoral , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/mortalidade , Especificidade da Espécie , Taxa de Sobrevida
16.
PLoS One ; 11(7): e0158641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379802

RESUMO

BACKGROUND: Injection drug use is a growing major public health concern. Injection drug users (IDUs) have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles. METHODS AND FINDINGS: A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19) and healthy control subjects (n = 19). The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy. CONCLUSIONS: These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.


Assuntos
Heroína/imunologia , Imunidade Humoral/imunologia , Inflamação/imunologia , Abuso de Substâncias por Via Intravenosa/imunologia , Adulto , Linfócitos B/imunologia , Ligante de CD40/sangue , Ligante de CD40/imunologia , Comorbidade , Estudos Transversais , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Hepatite C/sangue , Hepatite C/epidemiologia , Hepatite C/imunologia , Heroína/administração & dosagem , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Inflamação/sangue , Inflamação/epidemiologia , Interleucina-8/sangue , Interleucina-8/imunologia , Masculino , Entorpecentes/administração & dosagem , Entorpecentes/imunologia , New York/epidemiologia , Abuso de Substâncias por Via Intravenosa/sangue , Abuso de Substâncias por Via Intravenosa/epidemiologia , Fator de Crescimento Transformador alfa/sangue , Fator de Crescimento Transformador alfa/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
17.
PLoS One ; 10(6): e0130061, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076359

RESUMO

Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKß. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders.


Assuntos
Anestésicos Locais/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/patologia , Cocaína/efeitos adversos , Infecções por HIV/patologia , HIV-1/patogenicidade , Ativação Plaquetária/efeitos dos fármacos , Adulto , Animais , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/sangue , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/virologia , Feminino , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Quinase I-kappa B/metabolismo , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Transdução de Sinais
18.
Monoclon Antib Immunodiagn Immunother ; 34(2): 65-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25897603

RESUMO

To define features of the B cell response to HIV that may be translated to vaccine development, we have isolated a panel of monoclonal antibodies (MAbs) from HIV-infected patients. These MAbs are all highly reactive to HIV envelope (Env) from multiple clades, and include gp120 and gp41 specificities. Three of the MAbs exhibit substantial homology to previously described VH1-69, VH3-30, and VH4-59 HIV broadly neutralizing antibody lineages. An inherently autoreactive VH4-34 encoded MAb was reactive to diverse Env despite its minimal mutation from germline. Its isolation is consistent with our previous observation of increased VH4-34+antibodies in HIV-infected patients. These results suggest that conserved developmental processes contribute to immunoglobulin repertoire usage and maturation in response to HIV Env and that intrinsically autoreactive VH genes, despite the absence of mutation, could serve as effective templates for maturation and development of protective antibodies. These results also bear significant implications for the development of immunogens.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Sequência de Aminoácidos , Fármacos Anti-HIV/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Feminino , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Ligação Proteica
19.
Lab Chip ; 14(18): 3640-50, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25079889

RESUMO

The therapeutic potential of monoclonal antibodies (mAbs) makes them an ideal tool in both clinical and research applications due to their ability to recognize and bind specific epitopes with high affinity and selectivity. While mAbs offer significant therapeutic potential, their utility is overshadowed by the cost associated with their production, which often relies on the ability to identify minor antigen-specific cells out of a heterogeneous population. To address concerns with suboptimal methods for screening cells, we have developed a cell-sorting array composed of nanoliter spherical cell culture compartments termed microbubble (MB) wells. We demonstrate a proof-of-concept system for the detection of cell secreted factors from both immortalized cell lines and primary B cell samples. Exploiting the unique ability of the MB well architecture to accumulate cell secreted factors as well as affinity capture coatings, we demonstrate on-chip detection and recovery of antibody-secreting cells for sequencing of immunoglobin genes. Furthermore, rapid image capture and analysis capabilities were developed for the processing of large MB arrays, thus facilitating the ability to conduct high-throughput screening of heterogeneous cell samples faster and more efficiently than ever before. The proof-of-concept assays presented herein lay the groundwork for the progression of MB well arrays as an advanced on-chip cell sorting technology.


Assuntos
Linfócitos B/metabolismo , Separação Celular , Imunoglobulinas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Dispositivos Lab-On-A-Chip , Linfócitos B/citologia , Linhagem Celular , Separação Celular/instrumentação , Separação Celular/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Masculino , Microbolhas
20.
Avian Dis ; 57(2 Suppl): 503-8, 2013 06.
Artigo em Inglês | MEDLINE | ID: mdl-23901768

RESUMO

The role of pp38 in the pathogenesis of Marek's disease (MD) has not been fully elucidated. Previously, we reported the presence of two splice variants (Spl A and Spl B) for pp38. We also reported that the wild-type pp38 (WT), as well as the mutated pp38 (MUT), altered the oxidative phosphorylation pathway in infected cells. To determine whether the different forms of pp38 are important for the pathogenesis of MD, we generated RB-1B-based bacterial artificial chromosome (BAC) clones expressing pp38MUT, pp38Sp1 A, and pp38Spl B. Infectious viruses were recovered from these BAC clones in chick kidney cells (CKC). The Spl A and Spl B viruses had significantly smaller plaque sizes and replicated to a lesser degree in CKC than the WT and MUT viruses. Two in vivo experiments were conducted by inoculating 7-day-old P2a chicks with 1000 plaque-forming units of each virus. In the first experiment, chicks were sacrificed at 4, 8, 11, and 15 days postinfection (PI). WT and MUT viruses had similar viremia levels using virus isolation and quantitative real-time PCR (qPCR) assays, whereas Spl A and Spl B viruses had significantly lower viremia levels than WT and MUT viruses. In the second experiment, we showed that tumor development and MD mortality were similar in the WT- and MUT-infected chickens, with all birds MD positive at 5 wk PI. In contrast, chickens infected with Spl B and Spl A had a significantly lower MD incidence at 11 wk PI, when the experiment was terminated.


Assuntos
Transformação Celular Neoplásica , Galinhas , Mardivirus/genética , Mardivirus/patogenicidade , Doença de Marek/imunologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Transformação Celular Neoplásica/imunologia , Células Cultivadas , Embrião de Galinha , Cromossomos Artificiais Bacterianos/genética , Mardivirus/metabolismo , Doença de Marek/virologia , Fosfoproteínas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Recombinação Genética , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA