Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Genes Chromosomes Cancer ; 63(4): e23235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656651

RESUMO

In myeloid neoplasms, both fusion genes and gene mutations are well-established events identifying clinicopathological entities. In this study, we present a thus far undescribed t(X;21)(p11.4;q22.12) in five cases with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The translocation was isolated or accompanied by additional changes. It did not generate any fusion gene or gene deregulation by aberrant juxtaposition with regulatory sequences. Molecular analysis by targeted next-generation sequencing showed that the translocation was accompanied by at least one somatic mutation in TET2, EZH2, RUNX1, ASXL1, SRSF2, ZRSR2, DNMT3A, and NRAS genes. Co-occurrence of deletion of RUNX1 in 21q22 and of BCOR in Xp11 was associated with t(X;21). BCOR haploinsufficiency corresponded to a significant hypo-expression in t(X;21) cases, compared to normal controls and to normal karyotype AML. By contrast, RUNX1 expression was not altered, suggesting a compensatory effect by the remaining allele. Whole transcriptome analysis showed that overexpression of HOXA9 differentiated t(X;21) from both controls and t(8;21)-positive AML. In conclusion, we characterized a new recurrent reciprocal t(X;21)(p11.4;q22.12) chromosome translocation in MDS and AML, generating simultaneous BCOR and RUNX1 deletions rather than a fusion gene at the genomic level.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Translocação Genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cromossomos Humanos Par 21/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
3.
Leukemia ; 36(11): 2577-2585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974102

RESUMO

Chromothripsis is a mitotic catastrophe that arises from multiple double strand breaks and incorrect re-joining of one or a few chromosomes. We report on incidence, distribution, and features of chromothriptic events in T-cell acute lymphoblastic leukemias (T-ALL). SNP array was performed in 103 T-ALL (39 ETP/near ETP, 59 non-ETP, and 5 with unknown stage of differentiation), including 38 children and 65 adults. Chromothripsis was detected in 11.6% of all T-ALL and occurred only in adult cases with an immature phenotype (12/39 cases; 30%). It affected 1 to 4 chromosomes, and recurrently involved chromosomes 1, 6, 7, and 17. Abnormalities of genes typically associated with T-ALL were found at breakpoints of chromothripsis. In addition, it gave rise to new/rare alterations, such as, the SFPQ::ZFP36L2 fusion, reported in pediatric T-ALL, deletions of putative suppressors, such as IKZF2 and CSMD1, and amplification of the BCL2 gene. Compared to negative cases, chromothripsis positive T-ALL had a significantly higher level of MYCN expression, and a significant downregulation of RGCC, which is typically induced by TP53 in response to DNA damage. Furthermore we identified mutations and/or deletions of DNA repair/genome stability genes in all cases, and an association with NUP214 rearrangements in 33% of cases.


Assuntos
Cromotripsia , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Rearranjo Gênico , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adulto
4.
Leuk Lymphoma ; 63(6): 1356-1362, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35045798

RESUMO

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (DH/TH-HGBL) still miss an in-depth genomic characterization. To identify accompanying genetic events, we performed a pilot study on 7 cases by applying DNA microarray and targeted NGS sequencing. Interestingly, the genetic background of DH/TH-HGBL is largely overlapping with that of other high-grade/poor prognosis lymphomas. Namely, copy number abnormalities were trisomy of chromosome 7 and chromosome 8q gain, encompassing MYC. Among gene variants, those affecting transcription factors (MYC, FOXO1), epigenetic modulators (KMT2D, EZH2 and CREEBP), and anti-apoptotic gene (BCL2), were recurrent. MYC and BCL2 were mutated in 3 and 5 cases, respectively. In addition, mutations of FOXO1, previously reported in Diffuse Large B-Cell Lymphomas, were also detected. Clarifying the genomic background of this subset of high-risk lymphomas will pave the way for the clinical use of new biomarkers to: (1) monitor treatment response and; (2) consider alternative targeted therapies.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-myc , Rearranjo Gênico , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Projetos Piloto , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética
5.
Ann Hematol ; 101(2): 297-307, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34859285

RESUMO

Platelet-derived growth factor receptor B (PDGFRB) gene rearrangements define a unique subgroup of myeloid and lymphoid neoplasms frequently associated with eosinophilia and characterized by high sensitivity to tyrosine kinase inhibition. To date, various PDGFRB/5q32 rearrangements, involving at least 40 fusion partners, have been reported. However, information on genomic and clinical features accompanying rearrangements of PDGFRB is still scarce. Here, we characterized a series of 14 cases with a myeloid neoplasm using cytogenetic, single nucleotide polymorphism array, and next-generation sequencing. We identified nine PDGFRB translocation partners, including the KAZN gene at 1p36.21 as a novel partner in a previously undescribed t(1;5)(p36;q33) chromosome change. In all cases, the PDGFRB recombination was the sole cytogenetic abnormality underlying the phenotype. Acquired somatic variants were mainly found in clinically aggressive diseases and involved epigenetic genes (TET2, DNMT3A, ASXL1), transcription factors (RUNX1 and CEBPA), and signaling modulators (HRAS). By using both cytogenetic and nested PCR monitoring to evaluate response to imatinib, we found that, in non-AML cases, a low dosage (100-200 mg) is sufficient to induce and maintain longstanding hematological, cytogenetic, and molecular remissions.


Assuntos
Rearranjo Gênico , Leucemia Mieloide/genética , Doenças Mieloproliferativas-Mielodisplásicas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Adulto , Idoso , Aberrações Cromossômicas , Proteínas do Citoesqueleto/genética , Eosinofilia/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Translocação Genética , Adulto Jovem
6.
Genes (Basel) ; 12(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440292

RESUMO

T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Humanos , Lactente , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Transcriptoma
8.
Blood ; 138(9): 773-784, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876209

RESUMO

Acute leukemias (ALs) of ambiguous lineage are a heterogeneous group of high-risk leukemias characterized by coexpression of myeloid and lymphoid markers. In this study, we identified a distinct subgroup of immature acute leukemias characterized by a broadly variable phenotype, covering acute myeloid leukemia (AML, M0 or M1), T/myeloid mixed-phenotype acute leukemia (T/M MPAL), and early T-cell precursor acute lymphoblastic leukemia (ETP-ALL). Rearrangements at 14q32/BCL11B are the cytogenetic hallmark of this entity. In our screening of 915 hematological malignancies, there were 202 AML and 333 T-cell acute lymphoblastic leukemias (T-ALL: 58, ETP; 178, non-ETP; 8, T/M MPAL; 89, not otherwise specified). We identified 20 cases of immature leukemias (4% of AML and 3.6% of T-ALL), harboring 4 types of 14q32/BCL11B translocations: t(2,14)(q22.3;q32) (n = 7), t(6;14)(q25.3;q32) (n = 9), t(7;14)(q21.2;q32) (n = 2), and t(8;14)(q24.2;q32) (n = 2). The t(2;14) produced a ZEB2-BCL11B fusion transcript, whereas the other 3 rearrangements displaced transcriptionally active enhancer sequences close to BCL11B without producing fusion genes. All translocations resulted in the activation of BCL11B, a regulator of T-cell differentiation associated with transcriptional corepressor complexes in mammalian cells. The expression of BCL11B behaved as a disease biomarker that was present at diagnosis, but not in remission. Deregulation of BCL11B co-occurred with variants at FLT3 and at epigenetic modulators, most frequently the DNMT3A, TET2, and/or WT1 genes. Transcriptome analysis identified a specific expression signature, with significant downregulation of BCL11B targets, and clearly separating BCL11B AL from AML, T-ALL, and ETP-ALL. Remarkably, an ex vivo drug-sensitivity profile identified a panel of compounds with effective antileukemic activity.


Assuntos
Biomarcadores Tumorais , Cromossomos Humanos Par 14/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Repressoras , Translocação Genética , Proteínas Supressoras de Tumor , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
9.
Genes Chromosomes Cancer ; 60(7): 482-488, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33611795

RESUMO

We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.


Assuntos
Biomarcadores Tumorais/genética , Duplicação Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Adolescente , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Regulação para Baixo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Proteína Homeobox Nkx-2.2/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptor Notch1/genética , Fator Nuclear 1 de Tireoide/genética
10.
Haematologica ; 106(6): 1559-1568, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467145

RESUMO

Early recognition of Ph-like acute lymphoblastic leukemia cases could impact on the management and outcome of this subset of B-lineage ALL. To assess the prognostic value of the Ph-like status in a pediatric-inspired, minimal residual disease (MRD)-driven trial, we screened 88 B-lineage ALL cases negative for the major fusion genes (BCR-ABL1, ETV6-RUNX1, TCF3-PBX1 and KTM2Ar) enrolled in the GIMEMA LAL1913 front-line protocol for adult BCR/ABL1-negative ALL. The screening - performed using the BCR/ABL1-like predictor - identified 28 Ph-like cases (31.8%), characterized by CRLF2 overexpression (35.7%), JAK/STAT pathway mutations (33.3%), IKZF1 (63.6%), BTG1 (50%) and EBF1 (27.3%) deletions, and rearrangements targeting tyrosine kinases or CRLF2 (40%). The correlation with outcome highlighted that: i) the complete remission (CR) rate was significantly lower in Ph-like compared to non-Ph-like cases (74.1% vs 91.5%, p=0.044); ii) at time point 2 (TP2), decisional for transplant allocation, 52.9% of Ph-like cases vs 20% of non-Ph-like were MRD-positive (p=0.025); iii) the Ph-like profile was the only parameter associated with a higher risk of being MRD-positive at TP2 (p=0.014); iv) at 24 months, Ph-like patients had a significantly inferior event-free and disease-free survival compared to non-Ph-like patients (33.5% vs 66.2%, p=0.005 and 45.5% vs 72.3%, p=0.062, respectively). This study documents that Ph-like patients have a lower CR rate, EFS and DFS, as well as a greater MRD persistence also in a pediatric-oriented and MRD-driven adult ALL protocol, thus reinforcing that the early recognition of Ph-like ALL patients at diagnosis is crucial to refine risk-stratification and to optimize therapeutic strategies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adulto , Intervalo Livre de Doença , Humanos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico
11.
Acta Neuropathol Commun ; 8(1): 145, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843091

RESUMO

The catalytic activity of human Telomerase Reverse Transcriptase (TERT) compensates for the loss of telomere length, eroded during each cell cycle, to ensure a correct division of stem and germinal cells. In human tumors, ectopic TERT reactivation, most frequently due to hotspot mutations in the promoter region (TERTp), i.e. c.1-124 C > T, c.1-146 C > T, confers a proliferative advantage to neoplastic cells. In gliomas, TERTp mutations (TERTpmut) mainly occur in oligodendroglioma and glioblastoma. We screened, for TERTp hotspot mutations, 301 adult patients with gliomas and identified heterozygous mutations in 239 cases: 94% of oligodendroglioma, 85% of glioblastoma, and 37.5% of diffuse/anaplastic astrocytoma. Besides the recurrent c.1-124 C > T and c.1-146 C > T, two cases of glioblastoma harbored novel somatic TERTp variants, which consisted of a tandem duplications of 22 nucleotides, i.e. a TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, both located downstream c.1-124 C > T and c.1-146 C > T. In silico analysis predicted the formation of 119 and 108 new transcription factor's recognition sites for TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, respectively. TERTp duplications (TERTpdup) mainly affected the binding capacity of two transcription factors' families, i.e. the members of the E-twenty-six and the Specificity Protein/Krüppel-Like Factor groups. In fact, these new TERTpdup significantly enhanced the E-twenty-six transcription factors' binding capacity, which is also typically increased by the two c.1-124 C > T/c.1-146 C > T hotspot TERTpmut. On the other hand, they were distinguished by enhanced affinity for the Krüppel proteins. The luciferase assay confirmed that TERTpdup behaved as gain-of-function mutations causing a 2,3-2,5 fold increase of TERT transcription. The present study provides new insights into TERTp mutational spectrum occurring in central nervous system tumors, with the identification of new recurrent somatic gain-of-function mutations, occurring in 0.8% of glioblastoma IDH-wildtype.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/enzimologia , Feminino , Glioblastoma/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Telomerase/metabolismo
12.
J Mol Diagn ; 22(5): 629-639, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142900

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) results from deregulation of a number of genes via multiple genomic mechanisms. We designed a comprehensive fluorescence in situ hybridization (CI-FISH) assay that consists of genomic probes to simultaneously investigate oncogenes and oncosuppressors recurrently involved in chromosome rearrangements in T-ALL, which was applied to 338 T-ALL cases. CI-FISH provided genetic classification into one of the well-defined genetic subgroups (ie, TAL/LMO, HOXA, TLX3, TLX1, NKX2-1/2-2, or MEF2C) in 80% of cases. Two patients with translocations of the LMO3 transcription factor were identified, suggesting that LMO3 activation may serve as an alternative to LMO1/LMO2 activation in the pathogenesis of this disease. Moreover, intrachromosomal rearrangements that involved the 10q24 locus were found as a new mechanism of TLX1 activation. An unequal distribution of cooperating genetic defects was found among the six genetic subgroups. Interestingly, deletions that targeted TCF7 or TP53 were exclusively found in HOXA T-ALL, LEF1 defects were prevalent in NKX2-1 rearranged patients, CASP8AP2 and PTEN alterations were significantly enriched in TAL/LMO leukemias, and PTPN2 and NUP214-ABL1 abnormalities occurred in TLX1/TLX3. This work convincingly shows that CI-FISH is a powerful tool to define genetic heterogeneity of T-ALL, which may be applied as a rapid and accurate diagnostic test.


Assuntos
Biomarcadores Tumorais , Hibridização in Situ Fluorescente/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Evolução Clonal/genética , Feminino , Rearranjo Gênico , Heterogeneidade Genética , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Hibridização in Situ Fluorescente/normas , Masculino , Pessoa de Meia-Idade , Translocação Genética , Adulto Jovem
14.
Leukemia ; 33(10): 2481-2494, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30923319

RESUMO

The unbalanced translocation dic(1;7)(q10;p10) in myelodysplastic syndromes (MDS) is originated by centromeric juxtaposition resulting into 1q trisomy and 7q monosomy. More than half of cases arise after chemo/radio-therapy. To date, given the absence of genes within the centromeric regions, no specific molecular events have been identified in this cytogenetic subgroup. We performed the first comprehensive genetic and epigenetic analysis of MDS with dic(1;7)(q10;p10) compared to normal controls and therapy-related myeloid neoplasms (t-MNs). RNA-seq showed a unique downregulated signature in dic(1;7) cases, affecting more than 80% of differentially expressed genes. As revealed by pathway and gene ontology analyses, downregulation of ATP-binding cassette (ABC) transporters and lipid-related genes and upregulation of p53 signaling were the most relevant biological features of dic(1;7). Epigenetic supervised analysis revealed hypermethylation at intronic enhancers in the dicentric subgroup, in which low expression levels of enhancer putative target genes accounted for around 35% of the downregulated signature. Enrichment of Krüppel-like transcription factor binding sites emerged at enhancers. Furthermore, a specific hypermethylated pattern on 1q was found to underlie the hypo-expression of more than 50% of 1q-deregulated genes, despite trisomy. In summary, dic(1;7) in MDS establishes a specific transcriptional program driven by a unique epigenomic signature.


Assuntos
Epigênese Genética/genética , Síndromes Mielodisplásicas/genética , Translocação Genética/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação/genética , Transtornos Cromossômicos/genética , Regulação para Baixo/genética , Epigenômica/métodos , Feminino , Humanos , Cariotipagem/métodos , Masculino , Pessoa de Meia-Idade , Monossomia/genética , Estudos Retrospectivos , Transcrição Gênica/genética , Trissomia/genética
17.
Mol Cytogenet ; 9(1): 68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594918

RESUMO

BACKGROUND: Although Philadelphia-negative myeloproliferative neoplasms (Ph-MPN) are usually not aggressive, the type and the number of molecular lesions impact greatly on leukemic transformation. Indeed, the molecular background underlying progression is still largely unexplored even though ASXL1, IDH1/2, SRSF2, and TP53 mutations, together with adverse karyotypic changes, place the patient at high risk of leukemic transformation. CASE PRESENTATION: Our patient, a 64-year old man with a diagnosis of JAK2 (V617F) primary myelofibrosis (PMF) had an unusually rapid leukemic transformation. Genomic profiling showed that TET2 and SRSF2 mutations were also present. At leukemic transformation, the patient developed a complex chromosome rearrangement producing a EWSR1-MYB fusion. Remarkably, the expression of MYB and of its target BCL2 was, respectively, ≥4.7 and ≥2.8 fold higher at leukemic transformation than after chemotherapy, when the patient obtained the hematological remission. At this time point, the EWSR1-MYB fusion disappeared while JAK2 (V617F), TET2, and SRSF2 mutations, as well as PMF morphological features persisted. CONCLUSIONS: Rapid leukemic transformation of JAK2 (V617F) PMF was closely linked to a previously undescribed putative EWSR1-MYB transcription factor which was detected only at disease evolution. We hypothesize that the EWSR1-MYB contributed to leukemia transformation through at least two mechanisms: 1) it sustained MYB expression, and consequently deregulated its target BCL2, a putative onco-suppressor gene; and 2) ectopic EWSR1-MYB expression probably fulfilled its own oncogenic potential as demonstrated for other MYB-fusions. As our study confirmed that MYB is recurrently involved in chronic as well as leukemic transformation of PMF, it appears to be a valid molecular marker for tailored treatments.

18.
Haematologica ; 101(8): 951-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151989

RESUMO

Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Biomarcadores , Criança , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Fenótipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Adulto Jovem
19.
Haematologica ; 101(8): 941-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151993

RESUMO

Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Análise de Sequência de RNA , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Criança , Análise por Conglomerados , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Feminino , Perfilação da Expressão Gênica , Humanos , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Prognóstico , Receptor Notch1/genética , Receptor Notch1/metabolismo , Recidiva , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Análise de Sobrevida , Resultado do Tratamento , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem , Proteínas ras/metabolismo
20.
Pediatr Blood Cancer ; 62(12): 2238-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26179572

RESUMO

Distinguishing between alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) is crucial because treatment and prognosis are different. We describe a case of paratesticular rhabdomyosarcoma (RMS), which was classified as mixed ERMS/ARMS. Fluorescence in situ hybridization (FISH) detected losses of 3'PAX3 and 5'FOXO1, suggesting they had undergone an unbalanced rearrangement that probably produced the PAX3-FOXO1 fusion. Double-color FISH and reverse transcription-polymerase chain reaction (RT-PCR) revealed PAX3-FOXO1, which is characteristic of high-risk RMS. This finding highlights the importance of supplementing histology with genetics so that atypical RMS is appropriately classified and patients are correctly stratified and treated.


Assuntos
Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 2/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Embrionário/genética , Neoplasias Testiculares/genética , Translocação Genética , Pré-Escolar , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA