Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 480(9): 665-684, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115711

RESUMO

Necroptosis is a mode of programmed, lytic cell death that is executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following activation by the upstream kinases, receptor-interacting serine/threonine protein kinase (RIPK)-1 and RIPK3. Dysregulated necroptosis has been implicated in the pathophysiology of many human diseases, including inflammatory and degenerative conditions, infectious diseases and cancers, provoking interest in pharmacological targeting of the pathway. To identify small molecules impacting on the necroptotic machinery, we performed a phenotypic screen using a mouse cell line expressing an MLKL mutant that kills cells in the absence of upstream death or pathogen detector receptor activation. This screen identified the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) tyrosine kinase inhibitor, ABT-869 (Linifanib), as a small molecule inhibitor of necroptosis. We applied a suite of cellular, biochemical and biophysical analyses to pinpoint the apical necroptotic kinase, RIPK1, as the target of ABT-869 inhibition. Our study adds to the repertoire of established protein kinase inhibitors that additionally target RIPK1 and raises the prospect that serendipitous targeting of necroptosis signalling may contribute to their clinical efficacy in some settings.


Assuntos
Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Necroptose , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Cell Death Dis ; 13(4): 291, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365636

RESUMO

Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.


Assuntos
Necroptose , Proteínas Quinases , Animais , Apoptose , Morte Celular , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
3.
Immunol Cell Biol ; 100(2): 79-82, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023199

RESUMO

Recent studies, reviewed here, using a cigarette smoke exposure model for chronic obstructive pulmonary disease (COPD) in Ripk3 and Mlkl knock-out mice, and correlation with patient samples, suggest necroptosis plays a pathophysiological role in COPD by promoting inflammation, airway remodeling and emphysema.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Remodelação das Vias Aéreas , Animais , Modelos Animais de Doenças , Humanos , Inflamação , Pulmão , Camundongos , Necroptose
4.
ACS Chem Biol ; 15(10): 2702-2713, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32902249

RESUMO

Necroptosis is an inflammatory form of programmed cell death that has been implicated in various human diseases. Compound 2 is a more potent analogue of the published compound 1 and inhibits necroptosis in human and murine cells at nanomolar concentrations. Several target engagement strategies were employed, including cellular thermal shift assays (CETSA) and diazirine-mediated photoaffinity labeling via a bifunctional photoaffinity probe derived from compound 2. These target engagement studies demonstrate that compound 2 binds to all three necroptotic effector proteins (mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine protein kinase 1 (RIPK1) and receptor-interacting serine/threonine protein kinase 3 (RIPK3)) at different levels in vitro and in cells. Compound 2 also shows efficacy in vivo in a murine model of systemic inflammatory response syndrome (SIRS).


Assuntos
Necroptose/efeitos dos fármacos , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacocinética , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA