Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 15971-15981, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617670

RESUMO

Lepidium meyenii Walp. (Brassicaceae), also known as Maca or Peruvian ginseng, is a common ingredient in food supplements with many claimed health benefits, such as improved endurance, increased energy level, and enhanced sexual properties. Due to potential toxicity of its chemicals, including alkaloids, some regulatory authorities, e.g., in Belgium, Germany, the United States, expressed concerns about the safe consumption of Maca root. However, due to the lack of commercial standards, no established analytical method currently exists for this purpose. The current project focuses on the quantitative determination of potentially toxic alkaloids from Maca. The current study presents the first analytical method for quality control of alkaloid content in Maca-containing food and dietary supplements, assessing the presence of 11 major compounds belonging to three different classes, i.e., imidazole, ß-carboline, and pyrrole alkaloids. An accurate, rapid, and sensitive UPLC-TQD-MS/MS method is reported, which was fully validated according to the International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and SANTE/11312/2021 guidelines. To ensure the method's applicability and practicability in the absence of primary standards, validation of secondary standards (SSs) alongside primary standards (PSs) was also conducted for imidazole alkaloids. As a result, in Maca raw powder, total alkaloid content was found to vary from 418 to 554 ppm (mg/kg). Furthermore, all quantified imidazole alkaloids were ascertained to be the major alkaloids with the total content from 323 to 470 ppm in Maca raw powder, followed by the ß-carboline and pyrrole alkaloids. It was also observed that the commercial preparation of finished products affects the total alkaloid content, evidenced by the large variation from 56 to 598 ppm. Ultimately, from a regulatory point of view, it seems advisible not to request the complete absence of the alkaloids but to impose a maximum level based on safety considerations. In addition to the analytical method, a low-cost, simple, and scalable synthetic scheme of macapyrrolins A, C, and G was reported for the first time.

2.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38572889

RESUMO

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Assuntos
Annona , Curcumina , Ratos , Animais , Aflatoxina B1/toxicidade , Curcumina/farmacologia , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Creatinina/farmacologia , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aspartato Aminotransferases/farmacologia , Lactato Desidrogenases
3.
Phytomedicine ; 129: 155576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579643

RESUMO

BACKGROUND: Nature has perennially served as an infinite reservoir of diverse chemicals with numerous applications benefiting humankind. In recent years, due to the emerging COVID-19 pandemic, there has been a surge in studies on repurposing natural products as anti-SARS-CoV-2 agents, including plant-derived substances. Among all types of natural products, alkaloids remain one of the most important groups with various known medicinal values. The current investigation focuses on Amaryllidaceae alkaloids (AAs) since AAs have drawn significant scientific attention as anti-SARS-CoV-2 agents over the past few years. PURPOSE AND STUDY DESIGN: This study serves as a mini-review, summarizing recent advances in studying the anti-SARS-CoV-2 potency of AAs, covering two aspects: structure-activity relationship and mechanism of action (MOA). METHODS: The study covers the period from 2019 to 2023. The information in this review were retrieved from common databases including Web of Science, ScienceDirect, PubMed and Google scholar. Reported anti-SARS-CoV-2 potency, cytotoxicity and possible biological targets of AAs were summarized and classified into different skeletal subclasses. Then, the structure-activity relationship (SAR) was explored, pinpointing the key pharmacophore-related structural moieties. To study the mechanism of action of anti-SARS-CoV-2 AAs, possible biological targets were discussed. RESULTS: In total, fourteen research articles about anti-SARS-CoV-2 was selected. From the SAR point of view, four skeletal subclasses of AAs (lycorine-, galanthamine-, crinine- and homolycorine-types) appear to be promising for further investigation as anti-SARS-CoV-2 agents despite experimental inconsistencies in determining in vitro half maximal inhibitory effective concentration (EC50). Narciclasine, haemanthamine- and montanine-type skeletons were cytotoxic and devoid of anti-SARS-CoV-2 activity. The lycorine-type scaffold was the most structurally diverse in this study and preliminary structure-activity relationships revealed the crucial role of ring C and substituents on rings A, C and D in its anti-SARS-CoV-2 activity. It also appears that two enantiomeric skeletons (haemanthamine- and crinine-types) displayed opposite activity/toxicity profiles regarding anti-SARS-CoV-2 activity. Pharmacophore-related moieties of the haemanthamine/crinine-type skeletons were the substituents on rings B, C and the dioxymethylene moiety. All galanthamine-type alkaloids in this study were devoid of cytotoxicity and it appears that varying substituents on rings C and D could enhance the anti-SARS-CoV-2 potency. Regarding MOAs, initial experimental results suggested Mpro and RdRp as possible viral targets. Dual functionality between anti-inflammatory activity on host cells and anti-SARS-CoV-2 activity on the SARS-CoV-2 virus of isoquinoline alkaloids, including AAs, were suggested as the possible MOAs to alleviate severe complications in COVID-19 patients. This dual functionality was proposed to be related to the p38 MAPK signaling pathway. CONCLUSION: Overall, Amaryllidaceae alkaloids appear to be promising for further investigation as anti-SARS-CoV-2 agents. The skeletal subclasses holding the premise for further investigation are lycorine-, crinine-, galanthamine- and homolycorine-types.


Assuntos
Alcaloides de Amaryllidaceae , Antivirais , SARS-CoV-2 , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Amaryllidaceae/química
4.
Braz. J. Pharm. Sci. (Online) ; 58: e201056, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420410

RESUMO

Abstract Flavonoids are a diverse class of polyphenolic substances largely found in plants including citrus peels and are reported to posess a variety of biological activities. We investigated important flavonoids apigenin, hesperidin, narigin, quercetin and tangeritine against diabetes and associated conditions. In current project drug likeness, ADMET analysis, molecular docking and in vitro assays were performed. The apigenin, quercetin and tanagretin exhibited compliance with Lipinski's rule of five. The molecular docking analysis showed best fit in transcriptional regulator 3TOP and 1IK3 in all tested compounds. During antioxidant assays, all flavonoids presented excellent activities. In the α-glucosidase assay, quercetin showed highest inhibition (76% at final concentration of 52 µg/ml) followed by tangeritin (73% at final concentration of 52 µg/ml). In case of 15-Lox assay, highest inhibition was seen in case of quercetin (75%) followed by apigenin (53%). In the AGEs assay, the quercetin showed 47% inhbition of protein cross link formation preceeded by the tenegretin exhited 37% inhibition. It was therefore concluded that tested flavonoids have significant activities in both in silico and in vitro models that is mainly due to differences in structural features and polar surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA