Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 587: 71-86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253977

RESUMO

Macroautophagy is a specific variant of autophagy that involves a dedicated double-membraned organelle commonly known as autophagosome. Various methods have been developed to quantify the size of the autophagosomal compartment, which is an indirect indicator of macroautophagic responses, based on the peculiar ability of microtubule-associated protein 1 light chain 3 beta (MAP1LC3B; best known as LC3) to accumulate in forming autophagosomes upon maturation. One particularly convenient method to monitor the accumulation of mature LC3 within autophagosomes relies on a green fluorescent protein (GFP)-tagged variant of this protein and fluorescence microscopy. In physiological conditions, cells transfected temporarily or stably with a GFP-LC3-encoding construct exhibit a diffuse green fluorescence over the cytoplasm and nucleus. Conversely, in response to macroautophagy-promoting stimuli, the GFP-LC3 signal becomes punctate and often (but not always) predominantly cytoplasmic. The accumulation of GFP-LC3 in cytoplasmic dots, however, also ensues the blockage of any of the steps that ensure the degradation of mature autophagosomes, calling for the implementation of strategies that accurately discriminate between an increase in autophagic flux and an arrest in autophagic degradation. Various cell lines have been engineered to stably express GFP-LC3, which-combined with the appropriate controls of flux, high-throughput imaging stations, and automated image analysis-offer a relatively straightforward tool to screen large chemical or biological libraries for inducers or inhibitors of autophagy. Here, we describe a simple and robust method for the high-throughput quantification of GFP-LC3+ dots by automated fluorescence microscopy.


Assuntos
Autofagossomos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Microscopia de Fluorescência/métodos , Proteínas Associadas aos Microtúbulos/análise , Automação , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Methods Enzymol ; 588: 155-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28237099

RESUMO

Autophagy is an evolutionarily conserved process that mediates prominent homeostatic functions, both at the cellular and organismal level. Indeed, baseline autophagy not only ensures the disposal of cytoplasmic entities that may become cytotoxic upon accumulation, but also contributes to the maintenance of metabolic fitness in physiological conditions. Likewise, autophagy plays a fundamental role in the cellular and organismal adaptation to homeostatic perturbations of metabolic, physical, or chemical nature. Thus, the molecular machinery for autophagy is functionally regulated by a broad panel of sensors that detect indicators of metabolic homeostasis. Moreover, increases in autophagic flux have a direct impact on core metabolic circuitries including (but not limited to) glycolysis and mitochondrial respiration. Here, we detail a simple methodological approach to monitor these two processes in cultured cancer cells that mount a proficient autophagic response to stress.


Assuntos
Autofagia , Glicólise , Mitocôndrias/metabolismo , Técnicas de Cultura de Células/métodos , Células HCT116 , Humanos , Neoplasias/metabolismo , Consumo de Oxigênio
3.
Cell Death Differ ; 22(3): 499-508, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25571976

RESUMO

Autophagy is a cellular recycling program that retards ageing by efficiently eliminating damaged and potentially harmful organelles and intracellular protein aggregates. Here, we show that the abundance of phosphatidylethanolamine (PE) positively regulates autophagy. Reduction of intracellular PE levels by knocking out either of the two yeast phosphatidylserine decarboxylases (PSD) accelerated chronological ageing-associated production of reactive oxygen species and death. Conversely, the artificial increase of intracellular PE levels, by provision of its precursor ethanolamine or by overexpression of the PE-generating enzyme Psd1, significantly increased autophagic flux, both in yeast and in mammalian cell culture. Importantly administration of ethanolamine was sufficient to extend the lifespan of yeast (Saccharomyces cerevisiae), mammalian cells (U2OS, H4) and flies (Drosophila melanogaster). We thus postulate that the availability of PE may constitute a bottleneck for functional autophagy and that organismal life or healthspan could be positively influenced by the consumption of ethanolamine-rich food.


Assuntos
Autofagia/fisiologia , Longevidade/fisiologia , Fosfatidiletanolaminas/fisiologia , Animais , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Leveduras
4.
Cell Death Differ ; 22(3): 509-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25526088

RESUMO

Several natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitors.


Assuntos
Proteína p300 Associada a E1A/antagonistas & inibidores , Espermidina/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Humanos
5.
Med Device Technol ; 2(1): 26-31, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-10149432

RESUMO

Plastics provide many advantages that set them apart as materials for use in medical applications. However, despite these advantages, an appreciation of the environmental concerns associated with their production and disposal is vital. This article provides an overview of the position of polymers in the medical industry and the various responses that have been taken to environmental issues.


Assuntos
Resíduos de Serviços de Saúde/prevenção & controle , Plásticos , Equipamentos Descartáveis/normas , Equipamentos Descartáveis/estatística & dados numéricos , Humanos , Resíduos de Serviços de Saúde/efeitos adversos , Plásticos/química , Plásticos/economia , Plásticos/normas , Eliminação de Resíduos/economia , Eliminação de Resíduos/legislação & jurisprudência , Eliminação de Resíduos/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA