Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Nutr ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735572

RESUMO

BACKGROUND: The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogenous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVE: The objective of this study is to analyze the impact of different plant-based fibers (pectin, beta-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS: HFD-fed mice were supplemented with 5 different fiber types (pectin, beta-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (w/w) for 18 weeks (n=12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS: Only beta-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared to HFD-cellulose, while all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared to HFD-cellulose. All fibers supplemented into a HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids, however only beta-glucan supplementation increased cecal butyrate levels. Lastly, all fibers altered the small intestinal microbiota and portal bile acid composition. CONCLUSIONS: These findings demonstrate that beta-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.

2.
J Nutr ; 154(1): 121-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952777

RESUMO

BACKGROUND: Previously, we assessed the impact of restrictive diets, including caloric restriction (CR), intermittent fasting (IF), or fasting-mimicking diet (FMD), on a healthy gastrointestinal tract. We revealed that each of the diets shows anti-inflammatory outcomes. OBJECTIVE: The current study aimed to verify the diets' applicability in treating colitis. METHODS: We exposed a mouse model with mild chronic dextran sodium sulfate (DSS)-induced colitis to ad libitum control feeding, CR, IF, or FMD. The collected samples were analyzed for markers of inflammation. RESULTS: The diets reduced DSS-triggered increases in spleen weight and myeloperoxidase (MPO) activity. Diet intervention also influenced occludin levels, small intestine morphology, as well as cytokine and inflammatory gene expression, mainly in the mucosa of the proximal colon. The diets did not reverse DSS-enhanced gut permeability and thickening of the colon muscularis externa. Concerning inflammatory gene expression, the impact of DSS and the dietary intervention was limited to the colon as we did not measure major changes in the jejunum mucosa, Peyer's patches, and mesenteric lymph nodes. Further, rather modest changes in the concentration of intestinal bile acids were observed in response to the diets, whereas taurine and its conjugates levels were strongly affected. CONCLUSIONS: Despite the differences in the dietary protocol, the tested diets showed very similar impacts and, therefore, may be interchangeable when aiming to reduce inflammation in the colon. However, FMD showed the most consistent beneficial impact.


Assuntos
Colite , Dextranos , Sulfatos , Masculino , Animais , Camundongos , Dextranos/efeitos adversos , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Dieta , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
3.
Food Chem ; 439: 138059, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039608

RESUMO

Lipids are widespread in nature and play a pivotal role as a source of energy and nutrition for the human body. Vegetable oils (VOs) constitute a significant category in the food industry, containing various lipid components that have garnered attention for being natural, environmentally friendly and health-promoting. The review presented the classification of raw materials (RMs) from oil crops and quality analysis techniques of VOs, with the aim of improving comprehension and facilitating in-depth research of VOs. Brief descriptions were provided for four categories of VOs, and quality analysis techniques for both RMs and VOs were generalized. Furthermore, this study discussed the applications of lipidomics technology in component analysis, processing and utilization, quality determination, as well as nutritional function assessment of VOs. Through reviewing RMs and quality analysis techniques of VOs, this study aims to encourage further refinement and development in the processing and utilization of VOs, offering valuable references for theoretical and applied research in food chemistry and food science.


Assuntos
Lipidômica , Óleos de Plantas , Humanos , Valor Nutritivo , Alimentos
4.
J Nutr Biochem ; 124: 109517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37925090

RESUMO

As we reported previously, caloric restriction (CR) results in an increased concentration of bile acids (BA) in the intestinal mucosa. We now investigated the background of this phenotype, trying to identify nutrition-related factors modulating BA levels. Male mice were submitted to various types of restrictive diets and BA levels and expression of associated factors were measured. We found that BA concentration is increased in the liver of CR mice, which corresponds to reduced expression of the Shp gene and elevated mRNA levels of Cyp27a1, Bal, and Ntcp, as well as CYP7A1 protein and gene expression. Correlation between decreased concentration of BAs in the feces, increased BAs levels in plasma, and elevated gene expression of BAs transporters in the ileum mucosa suggests enhanced BA uptake in the intestine of CR mice. Corresponding to CR upregulation of liver and ileum mucosa, BA concentration was found in animals submitted to other types of prolonged energy-restricting dietary protocols, including intermittent fasting and fasting-mimicking diet. While over-night fasting had negligible impact on BAs levels. Manipulation of macronutrient levels partly affected BA balance. Low-carbohydrate and ketogenic diet increased BAs in the liver but not in the intestine. Carbohydrate restriction stimulates BA synthesis in the liver, but energy restriction is required for the increase in BA levels in the intestine and its uptake.


Assuntos
Ácidos e Sais Biliares , Intestinos , Masculino , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Homeostase , Nutrientes , Carboidratos
5.
Monatsh Chem ; 154(11): 1263-1273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927401

RESUMO

The synthesis, characterization, and reactivity of several new Cr(II) and Cr(III) complexes featuring an NCN pincer ligand with an arene backbone connected to amine donors NEt2 and NiPr2 via CH2-linkers is described. Reacting the in situ lithiated ligand precursor N(C-Br)NCH2-Et with [CrCl3(THF)3] resulted in the formation of the Cr(III) complex trans-[Cr(κ3NCN-NCNCH2-Et)(Cl)2(THF)]. Upon reaction of lithiated N(C-Br)NCH2-iPr with a suspension of anhydrous CrCl2, the Cr(II) complex [Cr(κ2NC-NCNCH2-iPr)2] is formed featuring two NCN ligands bound in κ2NC-fashion. In contrast, when lithiated N(C-Br)NCH2-iPr is reacted with a homogeneous solution of anhydrous CrX2 (X = Cl, Br), complexes [Cr(κ3NCN-NCNCH2-iPr)X] are obtained. Treatment of [Cr(κ3NCN-NCNCH2-iPr)Cl] with 1 equiv of PhCH2MgCl and LiCH2SiMe3 afforded the alkyl complexes [Cr(κ3NCN-NCNCH2-iPr)(CH2Ph)] and [Cr(κ3NCN-NCNCH2-iPr)(CH2SiMe3)]. All Cr(II) complexes exhibit effective magnetic moments in the range of 4.7-4.9 µB which is indicative for d4 high spin systems. If a solution of lithiated N(C-Br)NCH2-iPr is treated with CrCl2, followed by addition of an excess of Na[HB(Et)3], the dimeric complex [Cr(κ2NC-NCNCH2-iPr)(µ2-H)]2 is obtained bearing two bridging hydride ligands. [Cr(κ3NCN-NCNCH2-iPr)(CH2SiMe3)] turned out to be catalytically active for the hydrosilylation of ketones at room temperature with a catalyst loading of 1 mol%. X-ray structures of all complexes are presented. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-023-03128-6.

6.
ACS Omega ; 8(31): 28543-28552, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576644

RESUMO

Inhibitors of the tyrosine kinase (TK) activity of the epidermal growth factor receptor (EGFR) are routinely used in cancer therapy. However, there is a need to discover a new TK inhibitor. This study evaluated extracts from Brucea javanica and its components for their potential as novel EGFR-TK inhibitors. The cytotoxic effect of a g aqueous extract and its fractions was assessed by MTT assays with A549 lung cancer cells. The two fractions with the highest cytotoxicity were analyzed by LC/MS and 1H NMR. Brusatol was identified as the main constituent of these fractions, and its cytotoxic and pro-apoptotic activities were confirmed in A549 cells. To elucidate the inhibitory activity of brusatol against EGFR-TK, a specific ADP-GloTM kinase assay was used. In this assay, the IC50 value for EGFR-TK inhibition was 333.1 nM. Molecular dynamic simulations and docking experiments were performed to identify the binding pocket of brusatol to be located in the intracellular TK-domain of EGFR. This study demonstrates that brusatol inhibits EGFR-TK and therefore harbors a potential as a new therapeutic drug for the therapy of EGFR-depending cancers.

7.
Commun Chem ; 6(1): 138, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400564

RESUMO

The human pathogen Pseudomonas aeruginosa produces various 4(1H)-quinolones with diverse functions. Among these, 2-nonyl-4(1H)-quinolone (NQ) and its N-oxide (NQNO) belong to the main metabolites. Their biosynthesis involves substrates from the fatty acid metabolism and we hypothesized that oxidized fatty acids could be responsible for a so far undetected class of metabolites. We developed a divergent synthesis strategy for 2'-hydroxy (2'-OH) and 2'-oxo- substituted quinolones and N-oxides and demonstrated for the first time that 2'-OH-NQ and 2'-OH-NQNO but not the corresponding 2'-oxo compounds are naturally produced by PAO1 and PA14 strains of P. aeruginosa. The main metabolite 2'-OH-NQ is produced even in concentrations comparable to NQ. Exogenous availability of ß-hydroxydecanoic acid can further increase the production of 2'-OH-NQ. In contrast to NQ, 2'-OH-NQ potently induced the cytokine IL-8 in a human cell line at 100 nм, suggesting a potential role in host immune modulation.

8.
Compr Rev Food Sci Food Saf ; 22(4): 2678-2705, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37097053

RESUMO

Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.


Assuntos
Antioxidantes , Água , Humanos , Emulsões/química , Água/química , Antioxidantes/química , Oxirredução , Emulsificantes/química , Lipídeos/química
9.
Arch Toxicol ; 97(6): 1659-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37117602

RESUMO

Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.


Assuntos
Mecanotransdução Celular , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Ácido Palmítico/metabolismo , Proteômica , Ácidos Graxos , Ácido Oleico/metabolismo
10.
Chemistry ; 29(29): e202300094, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36866600

RESUMO

The synthesis of imines denotes a cornerstone in organic chemistry. The use of alcohols as renewable substituents for carbonyl-functionality represents an attractive opportunity. Consequently, carbonyl moieties can be in situ generated from alcohols upon transition-metal catalysis under inert atmosphere. Alternatively, bases can be utilized under aerobic conditions. In this context, we report the synthesis of imines from benzyl alcohols and anilines, promoted by KOt Bu under aerobic conditions at room temperature, in the absence of any transition-metal catalyst. A detailed investigation of the radical mechanism of the underlying reaction is presented. This reveals a complex reaction network fully supporting the experimental findings.

11.
Antioxidants (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671054

RESUMO

Different encapsulation materials might not only affect lipid hydrolysis but also lipid oxidation during in vitro digestion. Thus, this study aimed to investigate the effect of two commonly used shell materials, starch and gelatin, on the extent of lipolysis and bioaccessibility of the main and some minor lipid compounds, as well as on the oxidative status in encapsulated black seed oil (Nigella sativa) during in vitro digestion. The study was carried out using 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and high-performance liquid chromatography-UV. It was shown that starch increased the level of lipid hydrolysis in black seed oil during gastric in vitro digestion, while no differences were observed in the intestinal digestates between starch-encapsulated oil and gelatin-encapsulated oil. Similarly, the bioaccessibility of minor compounds (tocopherols, sterols and thymoquinone) was not influenced by the shell materials. However, regarding lipid oxidation, a 20- and 10-fold rise of free oxylipins was obtained in oils encapsulated by starch and gelatin, respectively, after intestinal in vitro digestion. This study evidenced that gelatin rather than starch should be used for the encapsulation of oils to minimize the digestion-induced formation of bioactive oxylipins.

12.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079986

RESUMO

High internal phase Pickering emulsion (HIPPE) is a type of emulsion stabilized by solid particles irreversibly adsorbed on an interfacial film, and the volume fraction of the dispersed phase (Φ) is larger than the maximum packing volume fraction (Φmax). Proteins, polysaccharides, and their composite particles can be used as good particle stabilizers. The contact angle can most intuitively demonstrate the hydrophilicity and hydrophobicity of the particles and also determines the type of emulsions (O/W or W/O type). Particles' three-phase contact angles can be adjusted to about 90° by compounding or modification, which is more conducive to emulsion stability. As a shear thinning pseudoplastic fluid, HIPPE can be extruded smoothly through 3D printer nozzles, and its high storage modulus can support the structure of printed products. There is huge potential for future applications in 3D printing of food. This work reviewed the biomacromolecules that can be used to stabilize food-grade HIPPE, the stabilization mechanism of the emulsions, and the research progress of food 3D printing to provide a reference for the development of advanced food products based on HIPPE.

13.
Front Nutr ; 9: 984715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118778

RESUMO

Regular consumption of hen eggs can help to prevent deficiencies of essential nutrients, such as essential amino acids, vitamin A and E or trace elements zinc and selenium, for vulnerable populations. This study focused on assessing the nutritional value of spray-dried eggs, favored by their manufacturability, storability and ease of addition to (complementary) foods. Using a wide range of analytical techniques, we recorded and compared the nutrient profiles of commercially produced pasteurized whole eggs and their respective powder samples spray-dried at 160°C. Important nutrients that were not significantly affected by spray-drying include total fat content, several amino acids, α- and δ-tocopherol, lutein, zeaxanthin, essential trace elements and cobalamin. The most notable mean losses were found for unsaturated fatty acids, e.g., linoleic (by -38.7%, from 4.11 ± 0.45 to 2.52 ± 0.75 g/100 g DM) and linolenic acid (by -60.8%, from 0.76 ± 0.05 to 0.30 ± 0.04 g/100 g DM). Despite recording significant retinol losses in two out of three batches, the overall low reduction of -14% recommend spray-dried eggs as a valuable source of vitamin A. A daily intake of spray-dried egg powder corresponding to one medium sized egg meets dietary reference values for children, e.g., by 100% for vitamin E, by 24% for retinol, by 61% for selenium and by 22% for zinc. In conclusion, even though a dry weight comparison favors supplementation with pasteurized whole eggs, our results demonstrate a high potential for spray-dried eggs as nutritional supplement. However, the spray-drying process should be optimized toward higher retentions of unsaturated fatty acids and retinol.

14.
Foods ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564012

RESUMO

A novel method combining high-pressure homogenization with enzymatic hydrolysis and hydrothermal cooking (HTC) was applied in this study to modify the structure of peanut protein, thus improving its physicochemical properties. Results showed that after combined modification, the solubility of peanut protein at a pH range of 2-10 was significantly improved. Moreover, the Turbiscan stability index of modified protein in the acidic solution was significantly decreased, indicating its excellent stability in low pH. From SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis), the high molecular weight fractions in modified protein were dissociated and the low molecular weight fractions increased. The combined modification decreased the particle size of peanut protein from 74.82 to 21.74 µm and shifted the isoelectric point to a lower pH. The improvement of solubility was also confirmed from the decrease in surface hydrophobicity and changes in secondary structure. This study provides some references on the modification of plant protein as well as addresses the possibility of applying peanut protein to acidic beverages.

15.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453460

RESUMO

Obesity has been linked to lower concentrations of fat-soluble micronutrients and higher concentrations of oxidative stress markers as well as an altered metabolism of branched chain amino acids and phospholipids. In the context of morbid obesity, the aim of this study was to investigate whether and to which extent plasma status of micronutrients, amino acids, phospholipids and oxidative stress differs between morbidly obese (n = 23) and non-obese patients (n = 13). In addition to plasma, malondialdehyde, retinol, cholesterol and triglycerides were assessed in visceral and subcutaneous adipose tissue in both groups. Plasma γ-tocopherol was significantly lower (p < 0.011) in the obese group while other fat-soluble micronutrients showed no statistically significant differences between both groups. Branched-chain amino acids (all p < 0.008) and lysine (p < 0.006) were significantly higher in morbidly obese patients compared to the control group. Malondialdehyde concentrations in both visceral (p < 0.016) and subcutaneous (p < 0.002) adipose tissue were significantly higher in the morbidly obese group while plasma markers of oxidative stress showed no significant differences between both groups. Significantly lower plasma concentrations of phosphatidylcholine, phosphatidylethanolamine, lyso-phosphatidylethanolamine (all p < 0.05) and their corresponding ether-linked analogs were observed, which were all reduced in obese participants compared to the control group. Pre-operative assessment of micronutrients in patients undergoing bariatric surgery is recommended for early identification of patients who might be at higher risk to develop a severe micronutrient deficiency post-surgery. Assessment of plasma BCAAs and phospholipids in obese patients might help to differentiate between metabolic healthy patients and those with metabolic disorders.

16.
Eur J Inorg Chem ; 2021(41): 4280-4285, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34819799

RESUMO

A series of cobalt complexes, stabilized by a monoanionic tridentate NCN pincer ligand, was synthetized and characterized. Preparation of the paramagnetic 15 VE complex [Co(NCNCH2-Et)Br] (1) was accomplished by transmetalation of Li[2,6-(Et2NCH2)2C6H3] with CoBr2 in THF. Treatment of this air-sensitive compound with NO gas resulted in the formation of the diamagnetic Co(III) species [Co(NCNCH2-Et)(NO)Br] (2) as confirmed by X-ray diffraction. This complex features a strongly bent NO ligand (Co-N-O∠135.0°). The νNO is observed at 1609 cm-1 which is typical for a bent metal-N-O arrangement. Coordinatively unsaturated 1 could further be treated with pyridine, isocyanides, phosphines and CO to form five-coordinate 17 VE complexes. Oxidation of 1 with CuBr2 led to the formation of the Co(III) complex [Co(NCNCH2-Et)Br2]. Treatment of [Co(NCNCH2-Et)Br2] with TlBF4 as halide scavenger in acetonitrile led to the formation of the cationic octahedral complex [Co(NCNCH2-Et)(MeCN)3](BF4)2. A combination of X-ray crystallography, IR-, NMR- and EPR-spectroscopy as well as DFT/CAS-SCF calculations were used to characterize all compounds.

17.
Gut Microbes ; 13(1): 1992236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693866

RESUMO

Recently we showed that caloric restriction (CR) triggers an increase in the levels of free taurine, taurine-conjugated bile acids (BA), and other taurine conjugates in intestinal mucosa while decreasing glutathione (GSH) levels in wild-type male mice. In the current project, we decided to investigate whether the microbiota is involved in the response to CR by depleting gut bacteria. The antibiotics treatment diminished CR-specific increase in the levels of free taurine and its conjugates as well as upregulated expression and activity of GSH transferases (GST) in the intestinal mucosa. Further, it diminished a CR-related increase in BAs levels in the liver, plasma, and intestinal mucosa. Transplant of microbiota from CR mice to ad libitum fed mice triggered CR-like changes in MGST1 expression, levels of taurine and taurine conjugates in the mucosa of the ileum. We show for the first time, that microbiota contributes to the intestinal response to CR-triggered changes in BA, taurine, and GST levels.


Assuntos
Ácidos e Sais Biliares/metabolismo , Restrição Calórica , Microbioma Gastrointestinal , Glutationa Transferase/metabolismo , Mucosa Intestinal/metabolismo , Taurina/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Dalton Trans ; 50(39): 13915-13924, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528031

RESUMO

The syntheses of various manganese and iron PCP pincer complexes via a solvothermal oxidative addition methodology is described. Upon reacting [Mn2(CO)10] with the ligands (P(C-Br)PCH2-iPr) (1a) and (P(C-Br)PO-iPr) (1b), Mn(I) PCP pincer complexes [Mn(PCPCH2-iPr)(CO)3] (2a) and [Mn(-PCPO-iPr)(CO)3] (2b) were obtained. Protonation of 2a with HBF4·Et2O led to the formation of [Mn(κ3P,CH,P-P(CH)PCH2-iPr)(CO)3]BF4 (3) featuring an η2-Caryl-H agostic bond. The solvothermal reaction of 1a with [Fe2(CO)9] afforded the Fe(II) PCP pincer complex [Fe(PCPCH2-iPr)(CO)2Br] (4). Treatment of 4 with Li[HBEt3] afforded the Fe(I) complex [Fe(PCPCH2-iPr)(CO)2] (5a). When using the sterically more demanding ligands (P(C-Br)PCH2-tBu) (1c) and (P(C-Br)PO-tBu)(1d) striking differences in reactivity were observed. While neither 1c nor 1d showed any reactivity towards [Mn2(CO)10], the reaction with [Fe2(CO)9] and [Fe(CO)5] led to the formation of the Fe(I) complexes [Fe(PCPCH2-tBu)(CO)2] (5b) and [Fe(PCPO-tBu)(CO)2] (5c). X-ray structures of representative complexes are provided.

19.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546604

RESUMO

Viruses have evolved to manipulate host lipid metabolism to benefit their replication cycle. Enveloped viruses, including coronaviruses, use host lipids in various stages of the viral life cycle, particularly in the formation of replication compartments and envelopes. Host lipids are utilised by the virus in receptor binding, viral fusion and entry, as well as viral replication. Association of dyslipidaemia with the pathological development of Covid-19 raises the possibility that exploitation of host lipid metabolism might have therapeutic benefit against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, promising host lipid targets are discussed along with potential inhibitors. In addition, specific host lipids are involved in the inflammatory responses due to viral infection, so lipid supplementation represents another potential strategy to counteract the severity of viral infection. Furthermore, switching the lipid metabolism through a ketogenic diet is another potential way of limiting the effects of viral infection. Taken together, restricting the access of host lipids to the virus, either by using lipid inhibitors or supplementation with exogenous lipids, might significantly limit SARS-CoV-2 infection and/or severity.


Assuntos
COVID-19/metabolismo , Metabolismo dos Lipídeos , SARS-CoV-2/fisiologia , Animais , COVID-19/dietoterapia , COVID-19/imunologia , COVID-19/prevenção & controle , Humanos , Lipídeos/imunologia , SARS-CoV-2/genética
20.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070942

RESUMO

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Assuntos
Arginina/farmacologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Prótons , Serotonina/biossíntese , Linhagem Celular Tumoral , Fenclonina/farmacologia , Expressão Gênica , Granisetron/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células Parietais Gástricas/citologia , Células Parietais Gástricas/metabolismo , Inibidores de Proteases/farmacologia , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA