Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11907-11915, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571028

RESUMO

We report on stable, long-term operation of a diode-pumped solid-state laser (DPSSL) amplifying 15 ns pulses at 1029.5 nm wavelength to 10 J energy at 100 Hz pulse rate, corresponding to 1 kW average power, with 25.4% optical-to-optical efficiency. The laser was operated at this level for over 45 minutes (∼3 · 105 shots) in two separate runs with a rms energy stability of 1%. The laser was also operated at 7 J, 100 Hz for 4 hours (1.44 · 106 shots) with a rms long-term energy stability of 1% and no need for user intervention. To the best of our knowledge, this is the first time that long-term reliable amplification of a kW-class high energy nanosecond pulsed DPSSL at 100 Hz has been demonstrated.

2.
Opt Lett ; 48(23): 6320-6323, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039257

RESUMO

We report on efficient and stable, type-I phase-matched second harmonic conversion of a nanosecond high-energy, diode-pumped, Yb:YAG laser. With a frequency-doubling crystal in an enclosed, temperature controller with optical windows, 0.5% energy stability was achieved for approximately half an hour. This resulted in 48.9 J pulses at 10 Hz (489 W) and a conversion efficiency of 73.8%. These results are particularly important for stable and reliable operation of high-energy, frequency-doubled lasers.

3.
Opt Lett ; 48(13): 3471-3474, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390158

RESUMO

We report the first-ever, to the best of our knowledge, demonstration of the optical isolation of a kilowatt average power pulsed laser. A Faraday isolator capable of stable protection of the laser amplifier chain delivering 100 J nanosecond laser pulses at the repetition rate of 10 Hz has been developed and successfully tested. The isolator provided an isolation ratio of 30.46 dB in the course of an hour-long testing run at full power without any noticeable decrease due to the thermal effects. This is the first-ever, to the best of our knowledge, demonstration of a nonreciprocal optical device operated with such a powerful high-energy, high-repetition-rate laser beam, opening up the possibilities for this type of laser to be used for a number of industrial and scientific applications.


Assuntos
Lasers , Dispositivos Ópticos , Luz , Frequência Cardíaca
4.
Sci Rep ; 12(1): 18334, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316439

RESUMO

The novel method of the thermally-induced polarization changes driven power losses (TIPCL) analysis in the complex laser systems has been developed. The measurement has been tested on the amplifier chain of the 100 J / 10 Hz laser system 'Bivoj' operated at HiLASE Centre. By the usage of the measured non-uniform Mueller matrix of the amplifier chain, the optimization of the ideal input and output polarization state has been calculated numerically. The results of the optimization have been applied to the laser system, thus reducing the TIPCL from originally observed more than 33% to 7.9% for CW beam and to 9% for pulsed laser beam, respectively. To the best of our knowledge, this result represents the most efficient TIPCL suppression method for complex laser systems so far. The method also allows the definition of the ideal fully polarized non-uniform pre-compensation of input beam consequently suffering from zero TIPCL.

5.
Appl Opt ; 61(27): 7958-7965, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255916

RESUMO

We present an adaptive optics (AO) system for a 1.94-µm laser source. Our system consists of a home-made Shack-Hartmann wavefront sensor and silver-coated bimorph deformable mirror operating in a closed-loop control scheme. The wavefront sensor used an uncooled vapor phase deposition PbSe focal-plane array for the actual light sensing. An effect of thermal afterimage was found to be reducing the centroid detection precision significantly. The effect was analyzed in detail and finally has been dealt with by updating the background calibration. System stability was increased by reduction of control modes. The system functionality and stability were demonstrated by improved focal spot quality. By replacing some of the used optics, the range of the demonstrated mid-IR AOS could be extended to cover the spectral range of 1-5 µm. To the best of our knowledge, it is the first AO system built specifically for mid-IR laser wavefront correction.

6.
Opt Lett ; 46(22): 5771-5773, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780458

RESUMO

We report on obtaining output energy of 146 J in 10 ns long pulses at 10 Hz repetition rate from Bivoj, a multi-Joule multi-slab cryogenic gas-cooled diode pumped solid state laser, by overcoming its damage threshold bottleneck. This is a 40% energy and power increase of the laser system in comparison to our previous publication and to the most powerful multi-Joule high power laser system.

7.
Opt Lett ; 41(9): 2089-92, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128081

RESUMO

We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

8.
Appl Opt ; 53(15): 3255-61, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24922211

RESUMO

We report numerical and experimental results obtained with an optical setup that simulates the heating and cooling processes expected in a multi-slab high-average-power laser head. We have tested the performance of an adaptive optics system consisting of a photo-controlled deformable mirror (PCDM) and a Shack-Hartmann wavefront sensor for the effective correction of the generated wavefront aberrations. The performance of the adaptive optics system is characterized for different layouts of the actuator array and for different configurations of the heating mechanisms. The numerical results are benchmarked using a PCDM, which allowed us to experimentally compare the performances of different deformable mirrors.

9.
BMC Musculoskelet Disord ; 15: 109, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678698

RESUMO

BACKGROUND: At present time the number of implantations of joint replacements as well as their revisions increases. Higher demands are required on the quality and longevity of implants. The aim of this work was to determine the degree of oxidative degradation and the amount of free/residual radicals in selected ultra-high molecular weight polyethylene (UHMWPE) components of the joint replacements and demonstrate that the measured values are closely connected with quality and lifetime of the polymer components. METHODS: We tested both new (4 samples) and explanted (4 samples) UHMWPE polymers for total joint replacements. The samples were characterized by infrared spectroscopy (IR), electron spin resonance (ESR) and microhardness (MH) test. The IR measurements yielded the values of oxidation index and trans-vinylene index. The ESR measurements gave the free radicals concentration. RESULTS: In the group of new polyethylene components, we found oxidation index values ranging from 0.00-0.03 to 0.24. The trans-vinylene index values ranged from 0.044 to 0.080. The value of free radical concentration was zero in virgin and also in sample of Beznoska Company and non-zero in the other samples. In the group of explanted components, the measured values were associated with their history, micromechanical properties and performance in vivo. CONCLUSIONS: We demonstrated that measuring of oxidative damage may help the orthopaedic surgeon in estimating the quality of UHMWPE replacement component and thus radically to avoid early joint replacement failure due to worse polyethylene quality.


Assuntos
Materiais Biocompatíveis/química , Prótese de Quadril , Prótese do Joelho , Polietilenos/química , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/análise , Dureza , Humanos , Teste de Materiais , Oxirredução , Falha de Prótese , Reoperação , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA