Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Res ; 50(8): 887-97, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225587

RESUMO

Oxidative stress is a main factor responsible for key changes leading to the onset of age-related macular degeneration (ARMD) that occur in the retinal pigment epithelium (RPE), which is involved in phagocytosis of photoreceptor outer segments (POS). In this study, hydrogen peroxide (H2O2), H2O2 and iron ions (Fe) or rose Bengal (RB) in the presence of NADH and Fe were used to model free radical mediated oxidative stress to test if free radicals and singlet oxygen have different efficiency to inhibit phagocytosis of ARPE-19 cells. Free radical mediated oxidative stress was confirmed by HPLC-EC(Hg) measurements of cholesterol hydroperoxides in treated cells. Electron paramagnetic resonance (EPR) spin trapping was employed to detect superoxide anion. Cell survival was analyzed by the MTT assay. Specific phagocytosis of fluorescein-5-isothiocyanate-labeled POS and non-specific phagocytosis of fluorescent beads were measured by flow cytometry. HPLC analysis of cells photosensitized with RB in the presence of NADH and Fe indicated substantial increase in formation of free radical-dependent 7α/7ß-hydroperoxides. EPR spin trapping confirmed the photogeneration of superoxide anion in samples enriched with RB, NADH and Fe. For all three protocols sub-lethal oxidative stress induced significant inhibition of the specific phagocytosis of POS. In contrast, non-specific phagocytosis was inhibited only by H2O2 or H2O2 and Fe treatment. Inhibition of phagocytosis was transient and recoverable by 24 h. These results suggest that free radicals may exert similar to singlet oxygen efficiency in inhibiting phagocytosis of RPE cells, and that the effect depends on the location where initial reactive species are formed.


Assuntos
Radicais Livres/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Bovinos , Fagócitos
2.
Free Radic Biol Med ; 89: 873-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26482868

RESUMO

Zeaxanthin and α-tocopherol have been previously shown to efficiently protect liposomal membrane lipids against photosensitized peroxidation, and to protect cultured RPE cells against photodynamic killing. Here the protective action of combined zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells subjected to photodynamic (PD) stress mediated by rose Bengal (RB) or merocyanine-540 (MC-540) at sub-lethal levels. Stress-induced cytotoxicity was analyzed by the MTT assay. The peroxidation of membrane lipids was determined by HPLC-EC (Hg) measurements of cholesterol hydroperoxides using cholesterol as a mechanistic reporter molecule. The specific phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was measured by flow cytometry, and the levels of phagocytosis receptor proteins αv integrin subunit, ß5 integrin subunit and MerTK were quantified by Western blot analysis. Cytotoxicity measures confirmed that PD stress levels used for phagocytosis analysis were sub-lethal and that antioxidant supplementation protected against higher, lethal PD doses. Sub-lethal PD stress mediated by both photosensitizers induced the accumulation of 5α-OOH and 7α/ß-OOH cholesterol hydroperoxides and the addition of the antioxidants substantially inhibited their accumulation. Antioxidant delivery prior to PD stress also reduced the inhibitory effect of stress on POS phagocytosis and partially reduced the stress-induced diminution of phagocytosis receptor proteins. The use of a novel model system where oxidative stress was induced at sub-lethal levels enable observations that would not be detectable using lethal stress models. Moreover, novel observations about the protective effects of zeaxanthin and α-tocopherol on photodynamic damage to ARPE-19 cell membranes and against reductions in the abundance of receptor proteins involved in POS phagocytosis, a process essential for photoreceptor survival, supports the importance of the antioxidants in protecting of the retina against photooxidative injury.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Zeaxantinas/farmacologia , alfa-Tocoferol/farmacologia , Animais , Antioxidantes/farmacologia , Western Blotting , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Fagocitose/fisiologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA