Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Comp Med ; 74(2): 55-69, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508697

RESUMO

Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Colite Ulcerativa/microbiologia , Humanos , Camundongos , Feminino , Vida Livre de Germes , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Gravidez , Masculino , Modelos Animais de Doenças , Transplante de Microbiota Fecal
2.
Front Oncol ; 13: 1280891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090485

RESUMO

Background: Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, highlighting the pressing need to address its development. Inflammation plays a crucial role in augmenting the risk of CRC and actively contributes to all stages of tumorigenesis. Consequently, targeting early inflammatory responses in the intestinal tract to restore homeostasis holds significant potential for preventing and treating CRC. Fibrinogen C domain-containing 1 (FIBCD1), a chitin-binding transmembrane protein predominantly found on human intestinal epithelial cells (IECs), has garnered attention in previous research for its ability to effectively suppress inflammatory responses and promote tissue homeostasis at mucosal barriers. Methods: In this study, we investigated the role of FIBCD1 in CRC development using transgenic mice that mimic human expression of FIBCD1 at the intestinal mucosal barrier. To model aspects of CRC, we employed the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. Additionally, we examined the expression pattern of FIBCD1 in surgical specimens obtained from human CRC patients by immunohistochemical methods. By accessing public data repositories, we further evaluated FIBCD1 expression in colon adenocarcinoma and explored survival outcomes associated with FIBCD1 expression. Results: Here, we demonstrate that FIBCD1 substantially impacts CRC development by significantly reducing intestinal inflammation and suppressing colorectal tumorigenesis in mice. Furthermore, we identify a soluble variant of FIBCD1 that is significantly increased in feces during acute inflammation. Finally, we demonstrate increased expression of FIBCD1 by immunohistochemistry in human CRC specimens at more developed tumor stages. These results are further supported by bioinformatic analyses of publicly available repositories, indicating increased FIBCD1 expression in tumor tissues, where higher expression is associated with unfavorable prognosis. Conclusion: Collectively, these findings suggest that FIBCD1 influences early inflammatory responses in the AOM/DSS model, leading to a reduction in tumor size and burden. The increased expression of FIBCD1 in human CRC samples raises intriguing questions regarding its role in CRC, positioning it as a compelling candidate and novel molecular target for future research.

3.
Biology (Basel) ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36552252

RESUMO

The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host-microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens. This review aims to discuss the most recent, conflicting findings regarding the role of intestinal protozoa in gut homeostasis, interactions between intestinal protozoa and the bacterial microbiota, as well as potential immunological consequences of protozoa colonization.

4.
Cells ; 11(13)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805199

RESUMO

Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belonging to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to disease development and progression due to its interactions with RGD-dependent integrin receptors. Both tissue expression and circulating MFAP4 levels are associated with various disorders, including liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to participate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well as pathological conditions, discuss its known biological functions with special focus on elastic fiber assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health and disease.


Assuntos
Tecido Elástico , Neoplasias , Animais , Proteínas de Transporte/metabolismo , Tecido Elástico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Homeostase , Integrinas/metabolismo , Neoplasias/metabolismo
5.
Matrix Biol ; 111: 1-25, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644509

RESUMO

Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related domain family. It has been localized to elastic fiber-rich regions in several tissues including the arteries, lungs, heart and skin. MFAP4 binds collagen, fibrillins and tropoelastin and contributes to the process of microfibrillar assembly and maturation of elastic fibers. MFAP4 can also bind RGD-dependent integrins, predominantly αVß3 and αVß5 through its N-terminal RGD sequence, modulating cellular behavior. Circulating MFAP4 was suggested as a robust biomarker for hepatitis C virus- and alcoholic liver disease-related liver fibrosis, cardiovascular disorders and chronic obstructive pulmonary disease. In mice, MFAP4 seems to have a widely redundant role under homeostatic conditions, as global MFAP4 deficiency results in a mild pulmonary phenotype, causing emphysema-like airspace enlargement that progresses with age. However, emerging in vivo and in vitro data suggest that MFAP4 is actively involved in the pathogenesis of remodeling-associated diseases, including fibrosis, cardiovascular disorders, aging, asthma and cancer through activation of integrin-mediated signaling as well as by modulating TGF-ß pathway, thus supporting maladaptive matrix remodeling. This review summarizes the current knowledge about MFAP4 structure and localization, its mechanisms of action in disease-induced tissue remodeling as well as its potential role as a clinical biomarker.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Animais , Biomarcadores , Proteínas de Transporte/genética , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Oligopeptídeos/metabolismo
6.
Front Mol Biosci ; 9: 1081176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685283

RESUMO

Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.

7.
Front Cardiovasc Med ; 8: 764337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805319

RESUMO

Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE -/- Mfap4 -/-) and control apolipoprotein E-deficient (ApoE -/-) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE -/- Mfap4 -/- mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE -/- littermates. The ApoE -/- Mfap4 -/- AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-ß-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.

8.
Scand J Immunol ; 92(4): e12925, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32614476

RESUMO

Fungi are ubiquitous eukaryotic micro-organisms present in virtually all environmental habitats. Although rarely pathogenic to the healthy population, many fungal species are capable of causing human disease in immunocompromised individuals. Thus, fungal infections remain a significant cause of morbidity and mortality, with rising prevalence accompanying the worldwide increase in immunosuppression-based therapies. Therefore, better understanding of the mutual interactions between the protective host mechanisms and the invading fungi remains of critical importance. The innate immune system constitutes the first line of defence against exogenous insults. The innate antifungal immunity is mediated through recognition of specific pathogen-associated molecular patterns (PAMPs) by a broad panel of host pattern recognition receptors (PRRs), responsible for mounting adequate protective responses. In this review, we describe fungal PAMPs as well as a selection of PRRs able to recognize them. We focus on the members of the fibrinogen-related domain (FReD) protein family that have been shown to recognize fungi-derived molecules: ficolins, fibrinogen C domain containing 1 (FIBCD1) and tenascin-C. We describe their structure, their binding targets and their established as well as putative biological functions related to fungal recognition and immunity.


Assuntos
Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Fibrinogênio/imunologia , Humanos , Micoses/imunologia
9.
Inflamm Bowel Dis ; 25(8): 1349-1356, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30753482

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract. Surfactant protein D (SP-D) is expressed in the intestinal epithelium and is essential for innate host defense and regulation of inflammatory responses. Genetic variations of SP-D are associated with IBD, but the effects of SP-D in clinical disease development have not been clarified. We hypothesized that colonic epithelial SP-D expression is increased in parallel with intestinal inflammation with the capacity to dampen deleterious effects. METHODS: Surgical specimens from IBD patients including Crohn's disease (n = 9) and ulcerative colitis (n = 18) were scored for expression of SP-D and inflammatory activity. Cohoused Sftpd+/+ and Sftpd-/- mouse littermates were subjected to dextran sodium sulfate (DSS) for 7 days to induce colitis. Colonic tissue was scored for histologic damage and analyzed for inflammatory markers and expression of SP-D. RESULTS: Surgical specimens from IBD patients showed a strong positive correlation between immunoscore for SP-D and inflammatory activity (R2 = 0.78, P < 0.0001). In mice, colonic epithelial SP-D expression was very low, and DSS-induced colitis was unaffected by SP-D deficiency, although DSS induced transcription of colonic SP-D to a mild degree. CONCLUSIONS: A strong positive correlation between inflammatory activity and epithelial expression of SP-D was observed in surgical specimens from IBD patients supporting a role for SP-D in clinical disease. The in vivo study was inconclusive due to very low intestinal SP-D expression in the mouse. Further studies are warranted to support that increased SP-D expression in the human colonic epithelium is protective against intestinal inflammation.


Assuntos
Biomarcadores/metabolismo , Colite/complicações , Inflamação/diagnóstico , Doenças Inflamatórias Intestinais/complicações , Mucosa Intestinal/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
10.
Front Immunol ; 9: 3013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619359

RESUMO

Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease. Surfactant protein D (SP-D) is an important anti-inflammatory protein that regulates host immune defense in the lungs. Here, we investigated the role of SP-D in a murine model of CS-induced inflammation. Pulmonary SP-D localization and abundance was compared between smoker and non-smoker individuals. For in vivo studies, wildtype, and SP-D-deficient mice were exposed to CS for either 12 weeks or 3 days. Moreover, the effect of therapeutic administration of recombinant fragment of human SP-D on the acute CS-induced changes was evaluated. Pulmonary SP-D appeared with heterogenous expression in human smokers, while mouse lung SP-D was uniformly upregulated after CS exposure. We found that SP-D-deficient mice were more susceptible to CS-induced macrophage-rich airway inflammation. SP-D deficiency influenced local pro-inflammatory cytokine levels, with increased CCL3 and interleukin-6 but decreased CXCL1. Furthermore, CS exposure caused significant upregulation of pro-inflammatory ceramides and related ceramide synthase gene transcripts in SP-D-deficient mice compared to wildtype littermates. Administration of recombinant fragment of human SP-D (rfhSP-D) alleviated CS-induced macrophage infiltration and prevented induction of ceramide synthase gene expression. Finally, rfhSP-D treatment attenuated CS-induced human epithelial cell apoptosis in vitro. Our results indicate that SP-D deficiency aggravates CS-induced lung inflammation partly through regulation of ceramide synthesis and that local SP-D enrichment rescues CS-induced inflammation.


Assuntos
Ceramidas/metabolismo , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Fumaça/efeitos adversos , Fumar/imunologia , Células A549 , Idoso , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Ceramidas/imunologia , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Proteína D Associada a Surfactante Pulmonar/deficiência , Fumar/efeitos adversos , Regulação para Cima
11.
Methods Mol Biol ; 1627: 49-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28836194

RESUMO

Pulmonary diseases such as fibrosis are characterized by structural abnormalities that lead to impairment of proper lung function. Stereological analysis of serial tissue sections allows detection and quantitation of subtle changes in lung architecture. Here, we describe a stereology-based method of assessing pathology-induced changes in lung structure.


Assuntos
Pulmão/patologia , Pulmão/fisiopatologia , Microscopia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Algoritmos , Animais , Imageamento Tridimensional , Microscopia/métodos , Modelos Anatômicos , Tamanho do Órgão , Fibrose Pulmonar/diagnóstico , Testes de Função Respiratória
12.
PLoS One ; 11(8): e0155203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27571350

RESUMO

Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VDL) or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OH)D) determinations. After cesarean section at gestational day 19 (E19) or day 22 (E22), placental weight, birth weight, crown-rump-length (CRL), oxygenation (SaO2) at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR). S-25(OH)D was significantly lower in the VDL group at cesarean section (12 vs. 30nmol/L, p<0.0001). Compared to the controls, E19 VDL pups had lower birth weight (2.13 vs. 2.29g, p<0.001), lung weight (0.09 vs. 0.10g, p = 0.002), SaO2 (54% vs. 69%, p = 0.002) as well as reduced survival time (0.50 vs. 1.25h, p<0.0001). At E22, the VDL-induced pulmonary differences were leveled out, but VDL pups had lower CRL (4.0 vs. 4.5cm, p<0.0001). The phospholipid levels and the surfactant protein mRNA expression did not differ between the dietary groups. In conclusion, Vitamin D depletion led to lower oxygenation and reduced survival time in the preterm offspring, associated with reduced lung weight and birth weight. Further studies of vitamin D depletion in respiratory insufficiency in preterm neonates are warranted.


Assuntos
Pulmão/metabolismo , Pulmão/fisiologia , Tamanho do Órgão/fisiologia , Oxigênio/metabolismo , Nascimento Prematuro/sangue , Nascimento Prematuro/fisiopatologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/fisiopatologia , Vitamina D/sangue , Animais , Peso Corporal/fisiologia , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Vitamina D/análogos & derivados
13.
Arterioscler Thromb Vasc Biol ; 36(1): 122-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564819

RESUMO

OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVß3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVß3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVß3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Animais , Apoptose , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Proteínas de Transporte/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Genótipo , Glicoproteínas/deficiência , Glicoproteínas/genética , Humanos , Hiperplasia , Integrina alfaVbeta3/metabolismo , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular
14.
J Biol Chem ; 291(3): 1103-14, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26601954

RESUMO

MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.


Assuntos
Proteínas de Transporte/metabolismo , Desmosina/metabolismo , Tecido Elástico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Microfibrilas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Tropoelastina/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Fibrilina-1 , Fibrilinas , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tropoelastina/química , Tropoelastina/genética
15.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1333-43, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432866

RESUMO

Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. ß-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-ß-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-ß-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-ß-glucan, or OVA/1,3-ß-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-ß-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-ß-glucan, but were reversed with rfhSP-D treatment. 1,3-ß-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-ß-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-ß-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma.


Assuntos
Hipersensibilidade/complicações , Hipersensibilidade/tratamento farmacológico , Inflamação/complicações , Inflamação/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Proteína D Associada a Surfactante Pulmonar/uso terapêutico , beta-Glucanas/metabolismo , Animais , Quimiocina CCL11/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Hipersensibilidade/patologia , Imunoglobulina E/metabolismo , Inflamação/patologia , Ligantes , Metaplasia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Ovalbumina , Substâncias Protetoras/farmacologia , Proteoglicanas , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Proteína D Associada a Surfactante Pulmonar/farmacologia , Hipersensibilidade Respiratória/complicações
16.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1114-24, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26033354

RESUMO

Microfibrillar-associated protein 4 (MFAP4) is localized to elastic fibers in blood vessels and the interalveolar septa of the lungs and is further present in bronchoalveolar lavage. Mfap4 has been previously suggested to be involved in elastogenesis in the lung. We tested this prediction and aimed to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated microcomputed tomography (micro-CT) in 8-mo-old Mfap4(-/-) mice, we found that the mean density of the lung parenchyma was decreased, and the low-attenuation area (LAA) was significantly increased by 14% compared with Mfap4(+/+) mice. Transmission electron microscopy (TEM) did not reveal differences in the organization of elastic fibers, and there was no difference in elastin content, but a borderline significant increase in elastin mRNA expression in 3-mo-old mice. Stereological analysis showed that alveolar surface density in relation to the lung parenchyma and total alveolar surface area inside of the lung were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes.


Assuntos
Proteínas de Transporte/genética , Proteínas da Matriz Extracelular/genética , Glicoproteínas/genética , Pulmão/patologia , Enfisema Pulmonar/genética , Animais , Elastina/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/deficiência , Feminino , Glicoproteínas/deficiência , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/fisiopatologia , Respiração , Transcriptoma
17.
Thorax ; 70(9): 862-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26038533

RESUMO

BACKGROUND: Recently, several proteins of the extracellular matrix have been characterised as active contributors to allergic airway disease. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein abundant in the lung, whose biological functions remain poorly understood. In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS: MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvß5 and promoted asthmatic bronchial smooth muscle cell proliferation and CCL11 release dependent on phosphatidyloinositol-3-kinase but not extracellular signal-regulated kinase pathway. CONCLUSIONS: MFAP4 promoted the development of asthmatic airway disease in vivo and pro-asthmatic functions of bronchial smooth muscle cells in vitro. Collectively, our results identify MFAP4 as a novel contributor to experimental asthma, acting through modulation of airway smooth muscle cells.


Assuntos
Asma/metabolismo , Proteínas de Transporte/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Western Blotting , Adesão Celular , Técnicas de Cultura de Células , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
19.
Stem Cell Res Ther ; 6: 61, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25889676

RESUMO

INTRODUCTION: Diabetes is associated with reduced expression of heme oxygenase-1 (HO-1), a heme-degrading enzyme with cytoprotective and proangiogenic properties. In myoblasts and muscle satellite cells HO-1 improves survival, proliferation and production of proangiogenic growth factors. Induction of HO-1 in injured tissues facilitates neovascularization, the process impaired in diabetes. We aimed to examine whether conditioned media from the HO-1 overexpressing myoblast cell line can improve a blood-flow recovery in ischemic muscles of diabetic mice. METHODS: Analysis of myogenic markers was performed at the mRNA level in primary muscle satellite cells, isolated by a pre-plate technique from diabetic db/db and normoglycemic wild-type mice, and then cultured under growth or differentiation conditions. Hind limb ischemia was performed by femoral artery ligation in db/db mice and blood recovery was monitored by laser Doppler measurements. Mice were treated with a single intramuscular injection of conditioned media harvested from wild-type C2C12 myoblast cell line, C2C12 cells stably transduced with HO-1 cDNA, or with unconditioned media. RESULTS: Expression of HO-1 was lower in muscle satellite cells isolated from muscles of diabetic db/db mice when compared to their wild-type counterparts, what was accompanied by increased levels of Myf5 or CXCR4, and decreased Mef2 or Pax7. Such cells also displayed diminished differentiation potential when cultured in vitro, as shown by less effective formation of myotubes and reduced expression of myogenic markers (myogenic differentiation antigen - myoD, myogenin and myosin). Blood flow recovery after induction of severe hind limb ischemia was delayed in db/db mice compared to that in normoglycemic individuals. To improve muscle regeneration after ischemia, conditioned media collected from differentiating C2C12 cells (control and HO-1 overexpressing) were injected into hind limbs of diabetic mice. Analysis of blood flow revealed that media from HO-1 overexpressing cells accelerated blood-flow recovery, while immunohistochemical staining assessment of vessel density in injected muscle confirmed increased angiogenesis. The effect might be mediated by stromal-cell derived factor-1α proangiogenic factor, as its secretion is elevated in HO-1 overexpressing cells. CONCLUSIONS: In conclusion, paracrine stimulation of angiogenesis in ischemic skeletal muscle using conditioned media may be a safe approach exploiting protective and proangiogenic properties of HO-1 in diabetes.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/patologia , Músculo Esquelético/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Células Cultivadas , Quimiocina CXCL12/análise , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Isquemia/complicações , Isquemia/metabolismo , Isquemia/patologia , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Mioblastos/metabolismo , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX7/metabolismo , Receptores CXCR4/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise
20.
Cardiovasc Diabetol ; 13: 150, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361524

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). METHODS: PACs were isolated from bone marrow of 10-12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 µmol/L) or GW9662 (10 µmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. RESULTS: ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. CONCLUSIONS: In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , PPAR gama/metabolismo , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Hipoglicemiantes/farmacologia , Isquemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/genética , Rosiglitazona , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA