Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 150(6): 064315, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769970

RESUMO

The singlet state of nuclear spin-1/2 pairs is protected against many common relaxation mechanisms. Singlet order, which is defined as the population difference between the nuclear singlet and triplet states, usually decays more slowly than the nuclear magnetization. Nevertheless, some decay mechanisms for nuclear singlet order persist. One such mechanism is called scalar relaxation of the second kind (SR2K) and involves the relaxation of additional nuclei ("third spins") which have scalar couplings to the spin-1/2 pair. This mechanism requires a difference between the couplings of at least one third spin with the two members of the spin-1/2 pair, and depends on the longitudinal relaxation time of the third spin. The SR2K mechanism of nuclear singlet relaxation has previously been examined in the case where the relaxation rate of the additional spins is on the time scale of the nuclear Larmor frequency. In this paper, we consider a different regime, in which the longitudinal relaxation of the third spins is on a similar time scale to the J-coupling between the members of the spin pair. This regime is often encountered when the spin-1/2 pair has scalar couplings to nearby deuterium nuclei. We show that the SR2K mechanism may be suppressed in this regime by applying a radiofrequency field which is resonant either with the members of the spin pair, or with the third spins. These phenomena are analyzed theoretically and by numerical simulations, and demonstrated experimentally on a diester of [13C2, 2H2]-labeled fumarate in solution.

2.
J Magn Reson ; 235: 121-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23942141

RESUMO

We demonstrate that Fokker-Planck equations in which spatial coordinates are treated on the same conceptual level as spin coordinates yield a convenient formalism for treating magic angle spinning NMR experiments. In particular, time dependence disappears from the background Hamiltonian (sample spinning is treated as an interaction), spherical quadrature grids are avoided completely (coordinate distributions are a part of the formalism) and relaxation theory with any linear diffusion operator is easily adopted from the Stochastic Liouville Equation theory. The proposed formalism contains Floquet theory as a special case. The elimination of the spherical averaging grid comes at the cost of increased matrix dimensions, but we show that this can be mitigated by the use of state space restriction and tensor train techniques. It is also demonstrated that low correlation order basis sets apparently give accurate answers in powder-averaged MAS simulations, meaning that polynomially scaling simulation algorithms do exist for a large class of solid state NMR experiments.

3.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20120102, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918716

RESUMO

We report a solid-state NMR study of the anisotropic nuclear spin interactions in H2O@C60 at room temperature. We find evidence of significant dipole-dipole interactions between the water protons, and also a proton chemical shift anisotropy (CSA) interaction. The principal axes of these interaction tensors are found to be perpendicular. The magnitude of the CSA is too large to be explained by a model in which the water molecules are partially aligned with respect to an external axis. The evidence indicates that the observed CSA is caused by a distortion of the geometry or electronic structure of the fullerene cages, in response to the presence of the endohedral water.

4.
J Magn Reson ; 234: 90-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851025

RESUMO

Dynamic nuclear polarization (DNP) of (15)N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ∼1.5 K and 5 T. Both (15)N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ (15)N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two (15)N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. (15)N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute (15)N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal.


Assuntos
Óxido Nitroso/química , Teorema de Bayes , Intervalos de Confiança , Indicadores e Reagentes , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Isótopos de Nitrogênio , Reprodutibilidade dos Testes , Solventes
5.
J Chem Phys ; 135(17): 174502, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22070301

RESUMO

The contribution of scalar coupling relaxation of the second kind on the relaxation behaviour of nuclear spin singlet states has been derived. The analytical equation found for the relaxation rate constant of singlet state has been compared to the equation for the relaxation of longitudinal magnetization in order to find the conditions for which the singlet state remains long-lived even in the presence of this scalar relaxation mechanism. These results are relevant when the singlet state is formed in molecules with more than two interacting spins.

6.
Magn Reson Med ; 66(4): 1177-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21928358

RESUMO

The development of hyperpolarized tracers has been limited by short nuclear polarization lifetimes. The dominant relaxation mechanism for many hyperpolarized agents in solution arises from intramolecular nuclear dipole-dipole coupling modulated by molecular motion. It has been previously demonstrated that nuclear spin relaxation due to this mechanism can be removed by storing the nuclear polarization in long-lived, singlet-like states. In the case of N(2)O, storing the polarization of the nitrogen nuclei has been shown to substantially increase the polarization lifetime. The feasibility of utilizing N(2)O as a tracer is investigated by measuring the singlet-state lifetime of the N(2)O when dissolved in a variety of solvents including whole blood. Comparison of the singlet lifetime to longitudinal relaxation and between protonated and deuterated solvents is consistent with the dominance of spin-rotation relaxation, except in the case of blood.


Assuntos
Óxido Nitroso/sangue , Óxido Nitroso/química , Ressonância Magnética Nuclear Biomolecular/métodos , Tecido Adiposo/química , Animais , Gansos , Magnetismo , Ratos , Ratos Sprague-Dawley , Soluções , Solventes/química
7.
J Chem Phys ; 134(21): 214505, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21663365

RESUMO

The intermolecular contribution to the relaxation of singlet states has been derived on the basis of a translational-rotational diffusion model that describes molecules as impenetrable spheres which translate and rotate in an isotropic low-viscosity medium. The equations for the relaxation rate constants obtained are discussed and the dependence on physical parameters is exploited. Theoretical predictions are compared with experiments when the intermolecular relaxation is due to both protons and deuterons present in the sample. An agreement between experiments and theory of ±4% was obtained when the physical parameters are estimated from first-principles calculation.

8.
J Magn Reson ; 180(2): 245-55, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16554180

RESUMO

NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.

9.
J Chem Phys ; 123(19): 194907, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16321113

RESUMO

Partially averaged dipolar couplings (also referred to as residual dipolar couplings) D(ij) can be obtained from the analysis of the NMR spectra of molecules dissolved in liquid-crystalline solvents. Their values for a nonrigid molecule depend upon the bond lengths and angles, the rotational potentials, and the orientational order of the molecules. The molecule studied, 1-chloro-2-bromoethane, is one of the simplest example of a substituted alkane in which the rotational potential has three minimum-energy positions, trans and gauche+/-conformations, and the present investigation explores the problems inherent in deriving the form of the potential and the molecular geometry from the set of partially averaged couplings between the protons, and between protons and (13)C nuclei. The geometrical parameters and the rotational potential obtained are compared with the results from a density-functional theory method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA