Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Clin Immunol ; 44(1): 2, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099988

RESUMO

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Assuntos
DNA Polimerase III , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Pré-Escolar , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Ciclo Celular , Dano ao DNA , Fibroblastos
2.
J Clin Immunol ; 42(1): 119-129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657245

RESUMO

Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.


Assuntos
Síndrome de Job , Consanguinidade , Fatores de Troca do Nucleotídeo Guanina/genética , Homozigoto , Humanos , Síndrome de Job/diagnóstico , Síndrome de Job/genética , Mutação/genética , Sequenciamento do Exoma
3.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290277

RESUMO

Inborn errors of immunity cause monogenic immune dysregulatory conditions such as severe and recurrent pathogen infection, inflammation, allergy, and malignancy. Somatic reversion refers to the spontaneous repair of a pathogenic germline genetic variant and has been reported to occur in a number of inborn errors of immunity, with a range of impacts on clinical outcomes of these conditions. DOCK8 deficiency due to biallelic inactivating mutations in DOCK8 causes a combined immunodeficiency characterized by severe bacterial, viral, and fungal infections, as well as allergic disease and some cancers. Here, we describe the clinical, genetic, and cellular features of 3 patients with biallelic DOCK8 variants who, following somatic reversion in multiple lymphocyte subsets, exhibited improved clinical features, including complete resolution of infection and allergic disease, and cure over time. Acquisition of DOCK8 expression restored defective lymphocyte signalling, survival and proliferation, as well as CD8+ T cell cytotoxicity, CD4+ T cell cytokine production, and memory B cell generation compared with typical DOCK8-deficient patients. Our temporal analysis of DOCK8-revertant and DOCK8-deficient cells within the same individual established mechanisms of clinical improvement in these patients following somatic reversion and revealed further nonredundant functions of DOCK8 in human lymphocyte biology. Last, our findings have significant implications for future therapeutic options for the treatment of DOCK8 deficiency.


Assuntos
Diferenciação Celular , Fatores de Troca do Nucleotídeo Guanina/deficiência , Memória Imunológica/genética , Ativação Linfocitária/genética , Linfócitos/imunologia , Imunodeficiência Combinada Severa , Adulto , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Humanos , Masculino , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
4.
Blood ; 136(23): 2638-2655, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32603431

RESUMO

Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only ∼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.


Assuntos
Ligante CD27/deficiência , Doenças Genéticas Inatas , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/terapia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/mortalidade , Síndromes de Imunodeficiência/terapia , Lactente , Masculino , Estudos Retrospectivos , Taxa de Sobrevida
6.
J Clin Immunol ; 40(2): 299-309, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865525

RESUMO

Variants in MAGT1 have been identified as the cause of an immune deficiency termed X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease. Here, we describe 2 cases of XMEN disease due to novel mutations in MAGT1, one of whom presented with classical features of XMEN disease and another who presented with a novel phenotype including probable CNS vasculitis, HHV-8 negative multicentric Castelman disease and severe molluscum contagiosum, thus highlighting the clinical diversity that may be seen in this condition. Peripheral blood immunophenotyping of these 2 patients, together with an additional 4 XMEN patients, revealed reduced NKG2D expression, impaired CD28 expression on CD8+ T cells, CD4+ T cell lymphopenia, an inverted CD4:CD8 ratio and decreased memory B cells. In addition, we showed for the first time alterations to the CD8+ T cell memory compartment, reduced CD56hi NK cells, MAIT and iNKT cells, as well as compromised differentiation of naïve CD4+ T cells into IL-21-producing Tfh-type cells in vitro. Both patients were treated with supplemental magnesium with limited benefit. However, one patient has undergone allogeneic haematopoietic stem cell transplant, with full donor chimerism and immune reconstitution. These results expand our understanding of the clinical and immunological phenotype in XMEN disease, adding to the current literature, which we further discuss here.


Assuntos
Proteínas de Transporte de Cátions/genética , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/fisiologia , Leucócitos Mononucleares/imunologia , Neoplasias/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto , Diferenciação Celular , Criança , Quimerismo , Infecções por Vírus Epstein-Barr/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Memória Imunológica , Imunofenotipagem , Linfopenia , Magnésio/metabolismo , Masculino , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia
7.
JCI Insight ; 52019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31021819

RESUMO

Bi-allelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterised by severe pathogen infections, eczema, allergies, malignancy and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplantation (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of αß T and MAIT cells were reduced while γδT cells were increased in DOCK8-deficient patients. HSCT improved, abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalogue of cellular defects in DOCK8-deficient patients, and the efficacy of HSCT to correct these defects, concurrent with improvements in clinical phenotypes. Overall, our findings provide mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency post-HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.


Assuntos
Linfócitos B/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Transplante de Células-Tronco Hematopoéticas , Síndrome de Job/terapia , Linfócitos T/imunologia , Adolescente , Adulto , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Criança , Pré-Escolar , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Síndrome de Job/sangue , Síndrome de Job/genética , Síndrome de Job/imunologia , Ativação Linfocitária/genética , Resultado do Tratamento , Adulto Jovem
8.
Immunol Cell Biol ; 97(4): 389-402, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779216

RESUMO

Inherited defects in genes encoding for proteins that are involved in the assembly and dynamics of the actin skeleton have increasingly been identified in patients presenting with primary immunodeficiencies. In this review, we summarize a subset of the recently described conditions, emphasizing the clinical features as well as the immunophenotype and pathophysiology.


Assuntos
Citoesqueleto de Actina/genética , Proteínas do Citoesqueleto/metabolismo , Imunidade/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Humanos , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/fisiopatologia , Doenças da Imunodeficiência Primária/terapia
9.
Sci Immunol ; 3(24)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907691

RESUMO

Heterozygosity for human signal transducer and activator of transcription 3 (STAT3) dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the STAT3 promoter. The patients' cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with STAT3 DN mutations, ZNF341-deficient patients lack T helper 17 (TH17) cells, have an excess of TH2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the STAT3 transcription-dependent autoinduction and sustained activity of STAT3.


Assuntos
Regulação da Expressão Gênica/imunologia , Síndrome de Job/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Transcrição Gênica/imunologia , Adolescente , Adulto , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Núcleo Celular/metabolismo , Consanguinidade , Citocinas/imunologia , Citocinas/metabolismo , Éxons/genética , Feminino , Genes Recessivos/genética , Genes Recessivos/imunologia , Homozigoto , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Síndrome de Job/sangue , Síndrome de Job/imunologia , Mutação com Perda de Função , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linhagem , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma , Adulto Jovem , Dedos de Zinco/genética
10.
J Allergy Clin Immunol ; 139(3): 933-949, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27554822

RESUMO

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency caused by autosomal recessive loss-of-function mutations in DOCK8. This disorder is characterized by recurrent cutaneous infections, increased serum IgE levels, and severe atopic disease, including food-induced anaphylaxis. However, the contribution of defects in CD4+ T cells to disease pathogenesis in these patients has not been thoroughly investigated. OBJECTIVE: We sought to investigate the phenotype and function of DOCK8-deficient CD4+ T cells to determine (1) intrinsic and extrinsic CD4+ T-cell defects and (2) how defects account for the clinical features of DOCK8 deficiency. METHODS: We performed in-depth analysis of the CD4+ T-cell compartment of DOCK8-deficient patients. We enumerated subsets of CD4+ T helper cells and assessed cytokine production and transcription factor expression. Finally, we determined the levels of IgE specific for staple foods and house dust mite allergens in DOCK8-deficient patients and healthy control subjects. RESULTS: DOCK8-deficient memory CD4+ T cells were biased toward a TH2 type, and this was at the expense of TH1 and TH17 cells. In vitro polarization of DOCK8-deficient naive CD4+ T cells revealed the TH2 bias and TH17 defect to be T-cell intrinsic. Examination of allergen-specific IgE revealed plasma IgE from DOCK8-deficient patients is directed against staple food antigens but not house dust mites. CONCLUSION: Investigations into the DOCK8-deficient CD4+ T cells provided an explanation for some of the clinical features of this disorder: the TH2 bias is likely to contribute to atopic disease, whereas defects in TH1 and TH17 cells compromise antiviral and antifungal immunity, respectively, explaining the infectious susceptibility of DOCK8-deficient patients.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Síndromes de Imunodeficiência/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Alérgenos/imunologia , Criança , Pré-Escolar , Citocinas/imunologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Imunoglobulina E/sangue , Leucócitos Mononucleares/imunologia , Masculino , Adulto Jovem
11.
G3 (Bethesda) ; 3(12): 2321-33, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24142923

RESUMO

The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H(+)-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance.


Assuntos
Resposta ao Choque Térmico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Heterozigoto , Mutação , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Reprodutibilidade dos Testes , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero , Fatores de Transcrição/genética , Triptofano/genética , Triptofano/metabolismo
12.
Mol Biol Cell ; 24(18): 2876-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864711

RESUMO

Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H(2)O(2) treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H(2)O(2) but not to the superoxide radical generator menadione. Of interest, the same H(2)O(2)-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H(2)O(2) have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H(2)O(2), and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H(2)O(2)-induced stress, and in response to H(2)O(2), the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another.


Assuntos
Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Saccharomyces cerevisiae/citologia , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Citocromos b/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
PLoS One ; 8(6): e65240, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762325

RESUMO

Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.


Assuntos
Compartimento Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Carbono/farmacologia , Compartimento Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Fermentação/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Paraquat/toxicidade , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Potássio/farmacologia , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sódio/farmacologia , Sorbitol/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA