Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Protist ; 170(2): 187-208, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31055251

RESUMO

Nassellaria are marine protists belonging to the Radiolaria lineage (Rhizaria). Their skeleton, made of opaline silica, exhibit an excellent fossil record, extremely valuable in micro-paleontological studies for paleo-environmental reconstruction. Yet, to date very little is known about the extant diversity and ecology of Nassellaria in contemporary oceans, and most of it is inferred from their fossil record. Here we present an integrative classification of Nassellaria based on taxonomical marker genes (18S and 28S ribosomal DNA) and morphological characteristics obtained by optical and scanning electron microscopy imaging. Our phylogenetic analyses distinguished 11 main morpho-molecular clades relying essentially on the overall morphology of the skeleton and not on internal structures as previously considered. Using fossil calibrated molecular clock we estimated the origin of Nassellaria among radiolarians primitive forms in the Devonian (ca. 420 Ma), that gave rise to living nassellarian groups in the Triassic (ca. 250 Ma), during the biggest diversification event over their evolutionary history. This morpho-molecular framework provides both a new morphological classification easier to identify under light microscopy and the basis for future molecular ecology surveys. Altogether, it brings a new standpoint to improve our scarce understanding of the ecology and worldwide distribution of extant nassellarians.


Assuntos
Filogenia , Rhizaria/classificação , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Rhizaria/citologia , Rhizaria/genética , Rhizaria/ultraestrutura , Tempo
3.
Sci Rep ; 5: 13932, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26355099

RESUMO

Environmental diversity surveys are crucial for the bioassessment of anthropogenic impacts on marine ecosystems. Traditional benthic monitoring relying on morphotaxonomic inventories of macrofaunal communities is expensive, time-consuming and expertise-demanding. High-throughput sequencing of environmental DNA barcodes (metabarcoding) offers an alternative to describe biological communities. However, whether the metabarcoding approach meets the quality standards of benthic monitoring remains to be tested. Here, we compared morphological and eDNA/RNA-based inventories of metazoans from samples collected at 10 stations around a fish farm in Scotland, including near-cage and distant zones. For each of 5 replicate samples per station, we sequenced the V4 region of the 18S rRNA gene using the Illumina technology. After filtering, we obtained 841,766 metazoan sequences clustered in 163 Operational Taxonomic Units (OTUs). We assigned the OTUs by combining local BLAST searches with phylogenetic analyses. We calculated two commonly used indices: the Infaunal Trophic Index and the AZTI Marine Biotic Index. We found that the molecular data faithfully reflect the morphology-based indices and provides an equivalent assessment of the impact associated with fish farms activities. We advocate that future benthic monitoring should integrate metabarcoding as a rapid and accurate tool for the evaluation of the quality of marine benthic ecosystems.


Assuntos
Organismos Aquáticos , Biodiversidade , Ecossistema , Animais , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Sequenciamento de Nucleotídeos em Larga Escala
4.
Protist ; 166(3): 374-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26092634

RESUMO

Collodaria are ubiquitous and abundant marine radiolarian (Rhizaria) protists. They occur as either large colonies or solitary specimens, and, unlike most radiolarians, some taxa lack silicified structures. Collodarians are known to play an important role in oceanic food webs as both active predators and hosts of symbiotic microalgae, yet very little is known about their diversity and evolution. Taxonomic delineation of collodarians is challenging and only a few species have been genetically characterized. Here we investigated collodarian diversity using phylogenetic analyses of both nuclear small (18S) and large (28S) subunits of the ribosomal DNA, including 124 new sequences from 75 collodarians sampled worldwide. The resulting molecular phylogeny was compared to morphology-based classification. Our analyses distinguished the monophyletic clade of skeleton-less and spicule-bearing Sphaerozoidae from the sister clades Collosphaeridae (skeleton-bearing) and Collophidiidae (skeleton-less), while the Thalassicollidae was not retrieved as a monophyletic clade. Detailed morphological examination with electron microscopy combined with molecular analyses revealed many discrepancies, such as a mix between solitary and colonial species, co-existence of skeleton-less and skeleton-bearing specimens within the Collosphaeridae, as well as complex intraspecific variability in silicified structures. Such observations challenge a morphology-based classification and highlight the pertinence of an integrative taxonomic approach to study collodarian diversity.


Assuntos
Filogenia , Rhizaria/classificação , Biodiversidade , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Rhizaria/genética , Rhizaria/ultraestrutura
5.
Environ Sci Technol ; 49(13): 7597-605, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26052741

RESUMO

Diatoms are widely used as bioindicators for the assessment of water quality in rivers and streams. Classically, the diatom biotic indices are based on the relative abundance of morphologically identified species weighted by their autoecological value. Obtaining such indices is time-consuming, costly, and requires excellent taxonomic expertise, which is not always available. Here we tested the possibility to overcome these limitations using a next-generation sequencing (NGS) approach to identify and quantify diatoms found in environmental DNA and RNA samples. We analyzed 27 river sites in the Geneva area (Switzerland), in order to compare the values of the Swiss Diatom Index (DI-CH) computed either by microscopic quantification of diatom species or directly from NGS data. Despite gaps in the reference database and variations in relative abundance of analyzed species, the diatom index shows a significant correlation between morphological and molecular data indicating similar biological quality status for the majority of sites. This proof-of-concept study demonstrates the potential of the NGS approach for identification and quantification of diatoms in environmental samples, opening new avenues toward the routine application of genetic tools for bioassessment and biomonitoring of aquatic ecosystems.


Assuntos
Diatomáceas/genética , Monitoramento Ambiental/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Qualidade da Água , Diatomáceas/classificação , Ecossistema , Dados de Sequência Molecular , Filogenia , Rios , Suíça
6.
Curr Biol ; 24(1): 11-18, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24332546

RESUMO

BACKGROUND: Rhizaria are a major branch of eukaryote evolution with an extensive microfossil record, but only scarce molecular data are available. The rhizarian species Reticulomyxa filosa, belonging to the Foraminifera, is free-living in freshwater environments. In culture, it thrives only as a plasmodium with thousands of haploid nuclei in one cell. The R. filosa genome is the first foraminiferal genome to be deciphered. RESULTS: The genome is extremely repetitive, and the large amounts of identical sequences hint at frequent amplifications and homologous recombination events. Presumably, these mechanisms are employed to provide more gene copies for higher transcriptional activity and to build up a reservoir of gene diversification in certain gene families, such as the kinesin family. The gene repertoire indicates that it is able to switch to a single-celled, flagellated sexual state never observed in culture. Comparison to another rhizarian, the chlorarachniophyte alga Bigelowiella natans, reveals that proteins involved in signaling were likely drivers in establishing the Rhizaria lineage. Compared to some other protists, horizontal gene transfer is limited, but we found evidence of bacterial-to-eukaryote and eukaryote-to-eukaryote transfer events. CONCLUSIONS: The R. filosa genome exhibits a unique architecture with extensive repeat homogenization and gene amplification, which highlights its potential for diverse life-cycle stages. The ability of R. filosa to rapidly transport matter from the pseudopodia to the cell body may be supported by the high diversification of actin and kinesin gene family members.


Assuntos
Genoma de Protozoário , Rhizaria/genética , Citoesqueleto/genética , Transferência Genética Horizontal , Meiose , Dados de Sequência Molecular , Rhizaria/citologia , Fatores de Transcrição/genética
7.
Mob Genet Elements ; 3(2): e24773, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23914312

RESUMO

Found in different eukaryotic lineages, kleptoplastidy is the ability to sequester chloroplasts from algal preys that are ingested and partially digested. While most of the genetic information required for the activity and maintenance of the kleptoplastids disappeared with the digestion of the algal nuclei, the photosynthetic organelles remain active during extended period of time. Many different hypotheses have been proposed to explain the longevity of the kleptoplastids within their host. The most popular one involves Horizontal Gene Transfer (HGT) from the algal genome to the host nucleus. In order to test this hypothesis, transcriptome-based analyses have been performed on different kleptoplastidic organisms during the past few years. However, the variability of the results obtained does not allow drawing a convincing conclusion regarding the precise role of HGT in kleptoplastidy. Understanding the mechanism that allow persistence of the plastids is crucial, not only for the characterization of kleptoplastidy, but also for important evolutionary questions surrounding endosymbiotic events and the emergence and spread of photosynthesis in the eukaryotes. Here, I discuss alternative theories that could explain the longevity of sequestered plastids in their host, with special focus on the simplest chloroplast stability hypothesis.

8.
Mol Phylogenet Evol ; 67(1): 53-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280368

RESUMO

Rhizaria is one of the six supergroups of eukaryotes, which comprise the majority of amoeboid and skeleton-building protists living in freshwater and marine ecosystems. There is an overall lack of molecular data for the group and therefore the deep phylogeny of rhizarians is unresolved. Molecular data are particularly scarce for the clade of Retaria, which include two prominent groups of microfossils: foraminiferans and radiolarians. To fill this gap, we have produced and sequenced EST libraries for 14 rhizarian species including seven foraminiferans, Gromia and six taxa belonging to traditional Haeckel's Radiolaria: Acantharea, Polycystinea, and Phaeodarea. A matrix was constructed for phylogenetic analysis based on 109 genes and a total of 56 species, of which 22 are rhizarians. Our analyses provide the first multigene evidence for branching of Phaeodarea within Cercozoa, confirming the polyphyly of Haeckel's Radiolaria. It confirms the monophyly of Retaria, a clade grouping Foraminifera with other lineages of Radiolaria. However, contrary to what could be expected from morphological observations, Foraminifera do not form a sister group to radiolarians, but branch within them as sister to either Acantharea or Polycystinea depending on the multigene data set. While the monophyly of Foraminifera and Acantharea is well supported, that of Polycystinea, represented in our data by Spumellaria and Collodaria is questionable. In view of our study, Haeckel's Radiolaria appears as both, a polyphyletic and paraphyletic assemblage of independent groups that should be considered as separate lineages in protist classification.


Assuntos
Filogenia , Rhizaria/classificação , Teorema de Bayes , DNA de Protozoário/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Protozoários , Funções Verossimilhança , Modelos Genéticos , Rhizaria/genética , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Mol Biol Evol ; 30(1): 66-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22993235

RESUMO

Foraminifera from the genus Elphidium are heterotrophic protists that graze on diatoms and sequester chloroplasts from their algal preys, while digesting the rest of the diatom cell. During that process, known as kleptoplastidy, the acquired plastids remain active inside the foraminiferan cell for several months. As most of the genes required to sustain the activity of the chloroplasts are encoded in the diatom nucleus, it is unknown how the host cell can maintain the photosynthetic activity without this information. It has been proposed that maintenance of kleptoplastids could be explained by horizontal gene transfer (HGT). To test this hypothesis we obtained 17,125 EST sequences of Elphidium margaritaceum, and we screened this data set for diatom nuclear-encoded proteins having a function in photosynthetic activity or plastid maintenance. Our analyses show no evidence for the presence of such transcriptionally active genes and suggest that HGT hypothesis alone cannot explain the chloroplast's longevity in Elphidium.


Assuntos
Foraminíferos/genética , Perfilação da Expressão Gênica/métodos , Transferência Genética Horizontal , Plastídeos/genética , Cloroplastos/genética , Diatomáceas/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Fotossíntese , Filogenia , Análise de Sequência , Simbiose
10.
PLoS One ; 7(2): e32373, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393402

RESUMO

Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation.


Assuntos
Polimorfismo Genético , RNA Ribossômico/genética , Rhizaria/genética , Clonagem Molecular , DNA Ribossômico/metabolismo , Evolução Molecular , Genômica , Haplótipos , Microscopia Eletrônica de Varredura/métodos , Modelos Genéticos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Filogenia , Recombinação Genética , Rhizaria/metabolismo
11.
Protist ; 162(3): 394-404, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21130034

RESUMO

Kleptoplastidy is the ability of heterotrophic organisms to preserve chloroplasts of algal preys they eat and partially digest. As the sequestered chloroplasts stay functional for months, the "host" becomes photosynthetically active. Although remaining a marginal process, kleptoplastidy was observed in different protist lineages, including foraminifera. Previous studies showed at least eight species of the foraminiferal genera Haynesina and Elphidium grazing on diatoms and husbanding their chloroplasts. In order to characterize more precisely the origin of kleptochloroplasts in these genera, we obtained 1027 chloroplastic 16S rDNA sequences from 13 specimens of two Haynesina and five Elphidium species. We identified the foraminiferal kleptochloroplasts using a reference phylogeny made of 87 chloroplastic sequences of known species of diatoms and brown algae. All the analyzed specimens were performing kleptoplastidy and according to our phylogenetic analyses they seem to retain exclusively chloroplasts of diatom origin. There is no apparent specificity for the type of diatom from which chloroplasts originated, however some foraminiferal species seem to accept a wider range of diatoms than others. Possibly the diversity of kleptochloroplasts depends on the type of diatoms the foraminiferans feed on.


Assuntos
Cloroplastos/classificação , Diatomáceas/genética , Foraminíferos/classificação , Foraminíferos/microbiologia , Sequência de Bases , Cloroplastos/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Diatomáceas/classificação , Evolução Molecular , Foraminíferos/genética , Processos Heterotróficos , Dados de Sequência Molecular , Fotossíntese , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA