RESUMO
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds to CEACAM6, a cell-surface protein that is highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Using chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) to measure the tumor extracellular pH (pHe), we confirmed that L-DOS47 raises the tumor pHe from 4 h to 96 h post injection in acidic tumors (average increase of 0.13 units). Additional studies showed that combining L-DOS47 with anti-PD1 significantly increases the efficacy of the anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMO
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds CEACAM6, a cell surface protein highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Our results demonstrate that combining L DOS47 with anti-PD1 significantly increases the efficacy of anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMO
Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.
Assuntos
Poliaminas , Espermidina , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Células T de Memória , Glutamina/metabolismo , Linfócitos T CD8-Positivos/metabolismoRESUMO
Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.
Assuntos
Fucose , Melanoma , Humanos , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Fucose/metabolismo , Melanoma/tratamento farmacológico , Imunoterapia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologiaRESUMO
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Assuntos
Iopamidol , Neoplasias Pancreáticas , Humanos , Meios de Contraste , Concentração de Íons de Hidrogênio , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Microambiente TumoralRESUMO
Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown activity in melanoma, but has not been previously evaluated in metastatic non-small cell lung cancer. We conducted a single-arm open-label phase 1 trial ( NCT03215810 ) of TILs administered with nivolumab in 20 patients with advanced non-small cell lung cancer following initial progression on nivolumab monotherapy. The primary end point was safety and secondary end points included objective response rate, duration of response and T cell persistence. Autologous TILs were expanded ex vivo from minced tumors cultured with interleukin-2. Patients received cyclophosphamide and fludarabine lymphodepletion, TIL infusion and interleukin-2, followed by maintenance nivolumab. The end point of safety was met according to the prespecified criteria of ≤17% rate of severe toxicity (95% confidence interval, 3-29%). Of 13 evaluable patients, 3 had confirmed responses and 11 had reduction in tumor burden, with a median best change of 35%. Two patients achieved complete responses that were ongoing 1.5 years later. In exploratory analyses, we found T cells recognizing multiple types of cancer mutations were detected after TIL treatment and were enriched in responding patients. Neoantigen-reactive T cell clonotypes increased and persisted in peripheral blood after treatment. Cell therapy with autologous TILs is generally safe and clinically active and may constitute a new treatment strategy in metastatic lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase NeoplásicaRESUMO
BACKGROUND: Gastrointestinal (GI) cancers are the most common human tumors encountered worldwide. The majority of GI cancers are unresectable at the time of diagnosis, and in the subset of patients undergoing resection, few are cured. There is only a modest improvement in survival with the addition of modalities such as chemotherapy and radiation therapy. Due to an increasing global cancer burden, it is imperative to integrate alternative strategies to improve outcomes. It is well known that cancers possess diverse strategies to evade immune detection and destruction. This has led to the incorporation of various immunotherapeutic strategies, which enable reprogramming of the immune system to allow effective recognition and killing of GI tumors. METHODS: A review was conducted of the results of published clinical trials employing immunotherapy for esophageal, gastroesophageal, gastric, hepatocellular, pancreatic, and colorectal cancers. RESULTS: Monoclonal antibody therapy has come to the forefront in the past decade for the treatment of colorectal cancer. Immunotherapeutic successes in solid cancers such as melanoma and prostate cancer have led to the active investigation of immunotherapy for GI malignancies, with some promising results. CONCLUSIONS: To date, monoclonal antibody therapy is the only immunotherapy approved by the US Food and Drug Administration for GI cancers. Initial trials validating new immunotherapeutic approaches, including vaccination-based and adoptive cell therapy strategies, for GI malignancies have demonstrated safety and the induction of antitumor immune responses. Therefore, immunotherapy is at the forefront of neoadjuvant as well as adjuvant therapies for the treatment and eradication of GI malignancies.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias Gastrointestinais/terapia , Imunoterapia/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab , Cetuximab , Terapia Combinada , Neoplasias Gastrointestinais/imunologia , Humanos , Imunoterapia Adotiva , Panitumumabe , TrastuzumabRESUMO
There has been recent interest in the depletion of regulatory T cells (Tregs) as part of a multi-faceted approach to the immunotherapy of melanoma patients. This is in part due recent findings that convincingly show that Tregs are an integral part of regulating and even suppressing an immune response to growing tumor cells. We therefore compared three methods of Treg depletion and/or elimination, utilizing low dose cyclophosphamide (CY), a specific antibody directed against the IL-2 receptor found on Tregs (PC61) and the use of denileukin diftitox (DD), which is a fusion protein designed to have a direct cytocidal action on cells which express the IL-2 receptor. We show that CY administration resulted in the highest reduction in Tregs among the three reagents. However, the reduction in Tregs with CY was also associated with the concomitant reduction of CD8(+) T cells and a lack of tumor antigen priming. Utilization of DD resulted in a >50% Treg cell reduction without parallel cytocidal effects upon other T cell subsets but did not enhance anti-tumor immunity against B16 melanoma. Lastly, the PC61 showed a moderate reduction of Tregs that lasted longer than the other reagents, without a reduction in the total number of CD8(+) T cells. Furthermore, PC61 treatment did not abrogate tumor antigen-specific immunity elicited by dendritic cells (DC). We therefore conclude that PC61 administration was the most effective method of reducing Tregs in a murine melanoma model in addition to providing evidence of a synergistic effect when combined with DC-based immunotherapy.
Assuntos
Ciclofosfamida/farmacologia , Toxina Diftérica/farmacologia , Interleucina-2/farmacologia , Depleção Linfocítica/métodos , Melanoma Experimental/imunologia , Receptores de Interleucina-2/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunoterapia/métodos , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/farmacologia , Análise de SobrevidaRESUMO
Continual attempts to stimulate the immune system against malignancies have led to the development of various strategies based on active immunotherapy treatments. Dendritic cells are the most potent antigen presenting cells with the capacity to stimulate naive T cells and induce primary and secondary immune responses. Due to the pivotal role that DC play in eliciting and maintaining functional anti-tumor T cell responses, DC have been exploited as vaccines in an attempt to actively immunize patients. Initial solid tumor clinical trials involving DC-based immunization have shown progress in terms of eliciting T-cell reactivity and mediating tumor regression. These early promising data have led to multiple research endeavors to also employ DC immunotherapy for the treatment of poorly immunogenic malignancies such as breast cancer. Various strategies to load DC with tumor associated antigens in murine models of breast cancer as well as the state of human clinical trials are reviewed.