Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
IMA Fungus ; 14(1): 22, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932857

RESUMO

Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.

2.
IMA Fungus ; 14(1): 17, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670396

RESUMO

Fucose is a deoxyhexose sugar present and studied in mammals. The process of fucosylation has been the primary focus in studies relating to fucose in animals due to the presence of fucose in Lewis antigens. Very few studies have reported its presence in Fungi, mostly in Mucoromycotina. The constitution of 25% and 12% of this sugar in the carbohydrates of cell wall in the respective Umbelopsis and Mucorales strains boosts the need to bridge the gap of knowledge on fucose metabolism across the fungal tree of life. In the absence of a network map involving fucose proteins, we carried out an in-silico approach to construct the fucose metabolic map in Fungi. We analyzed the taxonomic distribution of 85 protein families in Fungi including diverse early diverging fungal lineages. The expression of fucose-related protein-coding genes proteins was validated with the help of transcriptomic data originating from representatives of early diverging fungi. We found proteins involved in several metabolic activities apart from fucosylation such as synthesis, transport and binding. Most of the identified protein families are shared with Metazoa suggesting an ancestral origin in Opisthokonta. However, the overall complexity of fucose metabolism is greater in Metazoa than in Fungi. Massive gene loss has shaped the evolutionary history of these metabolic pathways, leading to a repeated reduction of these pathways in most yeast-forming lineages. Our results point to a distinctive mode of utilization of fucose among fungi belonging to Dikarya and the early diverging lineages. We speculate that, while Dikarya used fucose as a source of nutrients for metabolism, the early diverging group of fungi depended on fucose as a building block and signaling compound.

3.
J Fungi (Basel) ; 9(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36675859

RESUMO

Some Trichoderma spp. exhibit natural abilities to reduce fungal diseases of plants through their mycoparasitic and antagonistic properties. In this study, we created new Trichoderma atroviride strains with elevated antifungal activity. This effect was achieved by improving the activity of cis-prenyltransferase, the main enzyme in dolichol synthesis, by expressing the RER2 gene from Saccharomyces cerevisiae. Since dolichyl phosphate is the carrier of carbohydrate residues during protein glycosylation, activation of its synthesis enhanced the activities of dolichyl-dependent enzymes, DPM synthase and N-acetylglucosamine transferase, as well as stimulated glycosylation of secretory proteins. Cellulases secreted by the transformants revealed significantly higher levels or activities compared to the control strain. Consequently, the resulting Trichoderma strains were more effective against the plant pathogens Pythium ultimum.

4.
Front Microbiol ; 12: 636986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679672

RESUMO

Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.

5.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008833

RESUMO

Protein glycosylation requires dolichyl phosphate as a carbohydrate carrier. Dolichols are α-saturated polyprenols, and their saturation in S. cerevisiae is catalyzed by polyprenyl reductase Dfg10 together with some other unknown enzymes. The aim of this study was to identify such enzymes in Candida. The Dfg10 polyprenyl reductase from S. cerevisiae comprises a C-terminal 3-oxo-5-alpha-steroid 4-dehydrogenase domain. Alignment analysis revealed such a domain in two ORFs (orf19.209 and orf19.3293) from C. albicans, which were similar, respectively, to Dfg10 polyprenyl reductase and Tsc13 enoyl-transferase from S. cerevisiae. Deletion of orf19.209 in Candida impaired saturation of polyprenols. The Tsc13 homologue turned out not to be capable of saturating polyprenols, but limiting its expression reduce the cellular level of dolichols and polyprenols. This reduction was not due to a decreased expression of genes encoding cis-prenyltransferases from the dolichol branch but to a lower expression of genes encoding enzymes of the early stages of the mevalonate pathway. Despite the resulting lower consumption of acetyl-CoA, the sole precursor of the mevalonate pathway, it was not redirected towards fatty acid synthesis or elongation. Lowering the expression of TSC13 decreased the expression of the ACC1 gene encoding acetyl-CoA carboxylase, the key regulatory enzyme of fatty acid synthesis and elongation.


Assuntos
Candida albicans/metabolismo , Dolicóis/biossíntese , Ácidos Graxos/metabolismo , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Humanos , Hifas/crescimento & desenvolvimento , Ácido Mevalônico/metabolismo , Mutação/genética , Filogenia , Poliprenois/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
6.
Bioessays ; 43(1): e2000207, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226145

RESUMO

Ferritins (FTs) are iron storage proteins that are involved in managing iron-oxygen balance. In our work, we present a hypothesis on the putative effect of geological changes that have affected the evolution and radiation of ferritin proteins. Based on sequence analysis and phylogeny reconstruction, we hypothesize that two significant factors have been involved in the evolution of ferritin proteins: fluctuations of atmospheric oxygen concentrations, altering redox potential, and changing availability of water rich in bioavailable ferric ions. Fish, ancient amphibians, reptiles, and placental mammals developed the broadest repertoire of singular FTs, attributable to embryonic growth in aquatic environments containing low oxygen levels and abundant forms of soluble iron. In contrast, oviparous land vertebrates, like reptiles and birds, that have developed in high oxygen levels and limited levels of environmental Fe2+ exhibit a lower diversity of singular FTs, but display a broad repertoire of subfamilies, particularly notable in early reptiles.


Assuntos
Cordados , Ferritinas , Animais , Cordados/metabolismo , Feminino , Ferritinas/genética , Ferro , Filogenia , Placenta/metabolismo , Gravidez
7.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255655

RESUMO

In a wide range of organisms, dolichyl phosphate mannose (DPM) synthase is a complex of tree proteins Dpm1, Dpm2, and Dpm3. However, in the yeast Saccharomyces cerevisiae, it is believed to be a single Dpm1 protein. The function of Dpm3 is performed in S. cerevisiae by the C-terminal transmembrane domain of the catalytic subunit Dpm1. Until present, the regulatory Dpm2 protein has not been found in S. cerevisiae. In this study, we show that, in fact, the Yil102c-A protein interacts directly with Dpm1 in S. cerevisiae and influences its DPM synthase activity. Deletion of the YIL102c-A gene is lethal, and this phenotype is reversed by the dpm2 gene from Trichoderma reesei. Functional analysis of Yil102c-A revealed that it also interacts with glucosylphosphatidylinositol-N-acetylglucosaminyl transferase (GPI-GnT), similar to DPM2 in human cells. Taken together, these results show that Yil102c-A is a functional homolog of DPMII from T. reesei and DPM2 from humans.


Assuntos
Proteínas Fúngicas/genética , Manosiltransferases/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Fosfatos de Dolicol/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Manosiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Trichoderma/genética
8.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086570

RESUMO

The astA gene encoding an alternative sulfate transporter was originally cloned from the genome of the Japanese Aspergillus nidulans isolate as a suppressor of sulfate permease-deficient strains. Expression of the astA gene is under the control of the sulfur metabolite repression system. The encoded protein transports sulfate across the cell membrane. In this study we show that AstA, having orthologs in numerous pathogenic or endophytic fungi, has a second function and, depending on growth conditions, can be translocated into mitochondria. This effect is especially pronounced when an astA-overexpressing strain grows on solid medium at 37 °C. AstA is also recruited to the mitochondria in the presence of mitochondria-affecting compounds such as menadione or antimycin A, which are also detrimental to the growth of the astA-overexpressing strain. Disruption of the Hsp70-Porin1 mitochondrial import system either by methylene blue, an Hsp70 inhibitor, or by deletion of the porin1-encoding gene abolishes AstA translocation into the mitochondria. Furthermore, we observed altered ATP levels and sulfite oxidase activity in the astA-overexpressing strain in a manner dependent on sulfur sources. The presented data indicate that AstA is also involved in the mitochondrial sulfur metabolism in some fungi, and thereby indirectly manages redox potential and energy state.


Assuntos
Trifosfato de Adenosina/metabolismo , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Sulfito Oxidase/metabolismo , Endocitose , Endófitos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Oxirredução , Fenótipo , Filogenia , Enxofre/metabolismo
9.
Arch Microbiol ; 202(10): 2727-2738, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734321

RESUMO

Tuber species may be regarded as complex microhabitats hosting diverse microorganisms inside their fruiting bodies. Here, we investigated the structure of microbial communities inhabiting the gleba of wild growing (in stands) T. aestivum, using Illumina sequencing and culture-based methods. The two methods used in combination allowed to extract more information on complex microbiota of Tuber aestivum gleba. Analysis of the V3-V4 region of 16S rDNA identified nine phyla of bacteria present in the gleba of T. aestivum ascomata, mostly Proteobacteria from the family Bradyrhizobiaceae. Our results ideally match the earlier data for other Tuber species where the family Bradyrhizobiaceae was the most represented. The ITS1 region of fungal rDNA represented six alien fungal species belonging to three phyla. To complement the metagenomic analysis, cultivable fungi and bacteria were obtained from the gleba of the same T. aestivum fruiting bodies. The identified fungi mostly belong to the phylum Basidiomycota and same to Ascomycota. Analysis of cultivable bacteria revealed that all the specimens were colonized by different strains of Bacillus. Fungal community inhabiting T. aestivum fruiting bodies was never shown before.


Assuntos
Ascomicetos/fisiologia , Bacillus/isolamento & purificação , Basidiomycota/isolamento & purificação , Bradyrhizobiaceae/isolamento & purificação , Carpóforos/fisiologia , Bacillus/classificação , Bacillus/genética , Basidiomycota/classificação , Basidiomycota/genética , Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/genética , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota
10.
Fungal Genet Biol ; 137: 103334, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958566

RESUMO

Some Trichoderma spp. have an ability to inhibit proliferation of fungal plant pathogens in the soil. Numerous compounds with a proven antifungal activity are synthesized via the terpene pathway. Here, we stimulated the activity of the mevalonate pathway in T. atroviride P1 by expressing the Saccharomyces cerevisiae ERG20 gene coding for farnesyl pyrophosphate (FPP) synthase, a key enzyme of this pathway. ERG20-expressing Trichoderma strains showed higher activities of FPP synthase and squalene synthase, the principal recipient of FPP in the mevalonate pathway. We also observed activation of dolichyl phosphate mannose (DPM) synthase, an enzyme in protein glycosylation, and significantly increased O- and N-glycosylation of secreted proteins. The hyper-glycosylation of secretory hydrolases could explain their increased activity observed in the ERG20 transformants. Analysis of the antifungal properties of the new strains revealed that the hydrolases secreted by the transformants inhibited growth of a plant pathogen, Pythium ultimum more efficiently compared to the control strain. Consequently, the biocontrol activity of the transgenic strains, determined as their ability to protect bean seeds and seedlings against harmful action of P. ultimum, was also improved substantially.


Assuntos
Hypocreales/metabolismo , Ácido Mevalônico/metabolismo , Antifúngicos/metabolismo , Fabaceae/microbiologia , Regulação Fúngica da Expressão Gênica/genética , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Glicosilação , Hypocreales/genética , Manosiltransferases/genética , Pythium/crescimento & desenvolvimento , Esteróis/metabolismo , Trichoderma/genética
11.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234450

RESUMO

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Assuntos
Dolicóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosiltransferases/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicóis/análise , Fungos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/química , Trichoderma/metabolismo
12.
Acta Biochim Pol ; 65(4): 545-554, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30427324

RESUMO

AstA (alternative sulfate transporter) belongs to a large, but poorly characterized, Dal5 family of allantoate permeases of the Major Facilitator Superfamily. The astA gene has been cloned from an IAM 2006 Japanese strain of Aspergillus nidulans by complementation of a sulfate permease-deficient mutant. In this study we show that conserved lysine residues in Central Cytoplasmic Loop (CCL) of the AstA protein may participate in anion selectivity, and control kinetic properties of the AstA transporter. A three-dimensional model containing four clustered lysine residues was created, showing a novel substrate-interacting structure in Major Facilitator Superfamily transporters. The assimilation constant (Kτ) of wild type AstA protein is 85 µM, while Vmax/mg of DW of AstA is twice that of the main sulfate transporter SB per mg of dry weight (DW) of mycelium (1.53 vs. 0.85 nmol/min, respectively). Amino acid substitutions in CCL did not abolish sulfate uptake, but affected its kinetic parameters. Mutants affected in the lysine residues forming the postulated sulfate-interacting pocket in AstA were able to grow and uptake sulfate, indicating that CCL is not crucial for sulfate transportation. However, these mutants exhibited altered values of Kτ and Vmax, suggesting that CCL is involved in control of the transporter activity.


Assuntos
Proteínas de Transporte de Ânions/química , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/química , Sulfatos/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte de Ânions/genética , Transporte Biológico , Cristalografia , Citoplasma/enzimologia , Proteínas Fúngicas/genética , Cinética , Lisina/química , Lisina/genética , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Especificidade por Substrato
13.
Biochim Biophys Acta Gen Subj ; 1861(4): 789-801, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130153

RESUMO

BACKGROUND: The pathogenic potential of Candida albicans depends on adhesion to the host cells mediated by highly glycosylated adhesins, hyphae formation and growth of biofilm. These factors require effective N-glycosylation of proteins. Here, we present consequences of up- and down-regulation of the newly identified ALG13 gene encoding N-acetylglucosaminyl transferase, a potential member of the Alg7p/Alg13p/Alg14p complex catalyzing the first two initial reactions in the N-glycosylation process. METHODS: We constructed C. albicans strain alg13∆::hisG/TRp-ALG13 with one allele of ALG13 disrupted and the other under the control of a regulatable promoter, TRp. Gene expression and enzyme activity were measured using RT-qPCR and radioactive substrate. Cell wall composition was estimated by HPLC DIONEX. Protein glycosylation status was analyzed by electrophoresis of HexNAcase, a model N-glycosylated protein in C. albicans. RESULTS: Both decreased and elevated expression of ALG13 changed expression of all members of the complex and resulted in a decreased activity of Alg7p and Alg13p and under-glycosylation of HexNAcase. The alg13 strain was also defective in hyphae formation and growth of biofilm. These defects could result from altered expression of genes encoding adhesins and from changes in the carbohydrate content of the cell wall of the mutant. GENERAL SIGNIFICANCE: This work confirms the important role of protein N-glycosylation in the pathogenic potential of C. albicans.


Assuntos
Candida albicans/genética , Candida albicans/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Alelos , Sequência de Aminoácidos , Biofilmes/crescimento & desenvolvimento , Candida albicans/enzimologia , Carboidratos/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação para Baixo/genética , Expressão Gênica/genética , Glicosilação , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
14.
J Fungi (Basel) ; 4(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29371499

RESUMO

The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.

15.
Microbiol Mol Biol Rev ; 80(1): 205-327, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26864432

RESUMO

The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Processamento de Proteína Pós-Traducional , Trichoderma/genética , Montagem e Desmontagem da Cromatina , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Redes e Vias Metabólicas/genética , Filogenia , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/classificação , Trichoderma/metabolismo
16.
Gene ; 573(2): 310-20, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210809

RESUMO

The kaeA(KAE1) (suDpro) gene, which was identified in Aspergillus nidulans as a suppressor of proline auxotrophic mutations, encodes the orthologue of Saccharomyces cerevisiae Kae1p, a member of the evolutionarily conserved KEOPS/EKC (Kinase, Endopeptidase and Other Proteins of Small size/Endopeptidase-like and Kinase associated to transcribed Chromatin) complex. In yeast, this complex has been shown to be involved in tRNA modification, transcription, and genome maintenance. In A. nidulans, mutations in kaeA result in several phenotypic effects, the derepression of arginine catabolism genes, and changes in the expression levels of several others, including genes involved in amino acid and siderophore metabolism, sulfate transport, carbon/energy metabolism, translation, and transcription regulation, such as rcoA(TUP1), which encodes the global transcriptional corepressor.


Assuntos
Arginina/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/fisiologia , Sequência de Aminoácidos , Aspergillus nidulans/metabolismo , Sequência de Bases , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Pleiotropia Genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Complexos Multiproteicos/fisiologia , Mutação
17.
Fungal Biol ; 119(6): 509-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25986548

RESUMO

Sulfate assimilation plays a vital role in prototrophic organisms. Orthologues of the alternative sulfate transporter (AstA) gene from Aspergillus nidulans were identified in the fungal plant pathogens Fusarium sambucinum and Fusarium graminearum. By physiological and biochemical analyses, the AstA orthologues were determined to be able to uptake sulfate from the environment. Similarly to astA in A. nidulans, the FsastA gene was found to be regulated by sulfur metabolite repression (SMR) in a sulfur-dependent manner. In contrast, the FgastA transcript was undetectable, however, when the FgastA gene was expressed heterologously in A. nidulans, the translated FgAstA protein acted as a sulfate transporter. Interestingly, F. sambucinum astA expression was remarkably augmented in infected potato tubers, despite the presence abundant sulfate and was found not to be correlated with plant resistance.


Assuntos
Aspergillus nidulans/enzimologia , Fusarium/enzimologia , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/biossíntese , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Aspergillus nidulans/genética , Fusarium/genética , Proteínas de Membrana Transportadoras/genética
18.
Curr Genet ; 61(2): 115-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25391366

RESUMO

In Aspergillus nidulans, expression of sulfur metabolism genes is activated by the MetR transcription factor containing a basic region and leucine zipper domain (bZIP). Here we identified and characterized MetZ, a new transcriptional regulator in A. nidulans and other Eurotiales. It contains a bZIP domain similar to the corresponding region in MetR and this similarity suggests that MetZ could potentially complement the MetR deficiency. The metR and metZ genes are interrupted by unusually long introns. Transcription of metZ, unlike that of metR, is controlled by the sulfur metabolite repression system (SMR) dependent on the MetR protein. Overexpression of metZ from a MetR-independent promoter in a ΔmetR background activates transcription of genes encoding sulfate permease, homocysteine synthase and methionine permease, partially complementing the phenotype of the ΔmetR mutation. Thus, MetZ appears to be a second transcription factor involved in regulation of sulfur metabolism genes.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Enxofre/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Aspergillus nidulans/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo
19.
Gene ; 544(2): 114-22, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24793581

RESUMO

The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Expressão Gênica , Geraniltranstransferase/genética , Ácido Mevalônico/metabolismo , Transferases/metabolismo , Trichoderma/enzimologia , Sequência de Aminoácidos , Ergosterol/metabolismo , Geraniltranstransferase/biossíntese , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Trichoderma/genética
20.
Acta Biochim Pol ; 56(3): 375-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19724780

RESUMO

Sulfate uptake, the first step of sulfate assimilation in all organisms, is a highly endoergic, ATP requiring process. It is under tight control at the transcriptional level and is additionally modulated by posttranslational modifications, which are not yet fully characterized. Sulfate anion is taken up into the cell by specific transporters, named sulfate permeases, located in the cell membrane. Bacterial sulfate permeases differ significantly from the eukaryotic transporters in their evolutionary origins, structure and subunit composition. This review focuses on the diversity and regulation of sulfate permeases in various groups of organisms.


Assuntos
Proteínas de Transporte de Ânions/classificação , Proteínas de Transporte de Ânions/metabolismo , Transporte de Íons/fisiologia , Sulfatos/metabolismo , Animais , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Humanos , Transporte de Íons/genética , Modelos Biológicos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA