Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 191: 114640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059931

RESUMO

A high number of varieties from corn (Zea mays L.) have been consumed for long time all over the world, however pigmented varieties are recently gaining renewed attention due to their beneficial effects and polyphenolic content. The natural lack of gluten makes corn suitable for consumption by celiac population, who need to control their inflammatory state through an appropriate gluten-free diet. The biological effects of polyphenols from pigmented corn are poorly investigated in the context of celiac disease. In this work, we analyzed through HPLC-DAD the phenolic composition of two Italian purple and red varieties ("Scagliolo Rosso" and "Rostrato di Rovetta", respectively) comparing their effects in human intestinal epithelial cells (CaCo-2 cells). The possible impact of gastro-intestinal digestion following oral consumption was assessed as well. The phenolic profile showed the presence of phenolic acids in both varieties, while anthocyanins were identified in Scagliolo Rosso only. After simulated digestion, the level of polyphenols did not significantly change and paralleled with an increased scavenging activity. In CaCo-2 cells, stimulated by a proinflammatory cocktail containing gliadin-derived peptides (IL-1ß, IFN-γ, digested gliadin), pigmented corn extracts inhibited the release of CXCL-10 and sICAM-1, with mechanisms partially ascribed to NF-κB impairment. At the same concentration (200 µg/mL), ROS production and catalase depletion were reverted through Nrf-2-independent mechanisms. Our data suggest that polyphenols from pigmented corns might help in controlling the inflammatory and oxidative state of people with celiac disease at intestinal level, at concentrations potentially achievable through a gluten-free diet.


Assuntos
Anti-Inflamatórios , Antioxidantes , Dieta Livre de Glúten , Polifenóis , Zea mays , Humanos , Células CACO-2 , Polifenóis/farmacologia , Polifenóis/análise , Zea mays/química , Antioxidantes/farmacologia , Antioxidantes/análise , Anti-Inflamatórios/farmacologia , Doença Celíaca/dietoterapia , Antocianinas/farmacologia , Antocianinas/análise , Espécies Reativas de Oxigênio/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/química , NF-kappa B/metabolismo
2.
Front Plant Sci ; 15: 1385332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863552

RESUMO

Camelina sativa, commonly referred to as camelina or false flax, has emerged as a promising cover crop with the potential to mitigate climate change-a pressing global challenge that demands urgent and sustainable solutions. Belonging to the Brassicaceae family and native to Europe and Central Asia, camelina is an oilseed crop known for its resilience in diverse climates, including arid and semi-arid regions, making it adaptable to various environments. A breeding program started from a study of six winter varieties and five spring varieties of camelina is described: these genetic materials were characterized by SSRs molecular markers and by GBS technique. Molecular data clearly showed all spring varieties were genetically similar and distinguishable from the winter varieties, which, in turn, clustered together. Using molecular data, parental varieties belonging to the two different clusters were selected to generate new genetic variability. The new variety obtained, selected through the bulk method based on three parameters: yield, earliness, and weight of 1000 seeds, has allowed the generation of the new genetic material provisionally named C1244. Chemical characterization was performed (bromatological and glucosinolates analysis) to better describe C1244 in comparison with benchmark varieties. The new variety exhibited early maturity, similar to spring varieties, making this genetic material promising for use in intercropping systems, a high weight of 1000 seeds (1.46 g) which improves and facilitates seeding/harvesting operations and a high oil content (33.62%) akin to winter varieties making it valuable for human and animal food purposes.

3.
Plants (Basel) ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145846

RESUMO

Plant pathogens are responsible for important damages to valuable crops causing important economic losses. Agrobiodiversity protection is crucial for the valorization of local varieties that could possess higher resistance to biotic and abiotic stress. At the beginning of germination, seeds are susceptible to pathogens attacks, thus they can release endogenous antimicrobial compounds of different natures in the spermosphere, to contrast proliferation of microorganisms. The work aimed at characterizing the maize of local variety Nostrano di Storo seed exudates secreted during the first phases of germination, to identify compounds active in the defense towards pathogens. Storo seed exudates were proven to inhibit F. verticilloides germination. In order to investigate the cause of the described effect, compositional profiling of the exudates was performed through NMR, lipidomic, and proteomic analyses. This study suggests an important role of microbial endophytic communities in the protection of the seed during the early phases of the germination process and their interplay with fatty acids released by the seeds, rather than a specific antifungal compound. The valorization of agronomically acceptable maize lines with pre-harvest enhanced resistances to pathogens contamination could lead, in the near future, to commercially available varieties potentially requiring more limited chemical protective treatments.

4.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406827

RESUMO

The cuticle is the plant's outermost layer that covers the surfaces of aerial parts. This structure is composed of a variety of aliphatic molecules and is well-known for its protective role against biotic and abiotic stresses in plants. Mutants with a permeable cuticle show developmental defects such as organ fusions and altered seed germination and viability. In this study, we identified a novel maize mutant, stocky1, with unique features: lethal at the seedling stage, and showing a severely dwarfed phenotype, due to a defective cuticle. For the first time, the mutant was tentatively mapped to chromosome 5, bin 5.04. The mutant phenotype investigated in this work has the potential to contribute to the elucidation of the role of the cuticle during plant development. The possibility of controlling this trait is of relevance in the context of climate change, as it may contribute to tolerance to abiotic stresses.

5.
Environ Monit Assess ; 194(3): 208, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194687

RESUMO

The monitoring of contaminants represents a priority to preserve the integrity of marine ecosystems, as well as to plan and to manage restoration activities in order to protect environmental and human health. In the present study, a 6-months active biomonitoring was performed to explore the levels of eighteen trace and toxic elements, including heavy metals (TEs; i.e. Al, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, and Zn), accumulated in soft tissues of blue mussel (Mytilus edulis Linnaeus, 1758) individuals transplanted at different depths (5- and 15-m depth) in five locations within the Flekkefjord fjord (Southern Norway). As this area suffered a long-lasting contamination due to both organic and inorganic contaminants, a series of restoration activities were activated to tackle and to prevent potential risks for ecosystem and local population. Our results demonstrated that the levels of TEs accumulated in edible tissues of transplanted mussels in the Flekkefjord fjord were generally low before the beginning of the restoration activities. However, location- and time-specific differences in the accumulation of TEs were noted after the implementation of such activities. Interestingly, the levels of Fe and Mn significantly increased after the beginning of the restoration activities, likely because the release of these TEs from the slag used in such operations and/or resuspension of contaminated sediments. However, assuming that native mussels can accumulate the same TEs at levels measured in transplanted individuals, our results suggest a substantial safety for human consumption of native mussels from the Flekkefjord fjord, regardless of restoration activities.


Assuntos
Metais Pesados , Mytilus edulis , Oligoelementos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Humanos , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
6.
Chemosphere ; 241: 125018, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31683415

RESUMO

Animal production is a source of heavy metals in livestock wastewater and also a key link in the food chain, with negative impacts on human and animal health. In intensive animal production systems, the most critical elements are zinc and copper. In order to development of innovative non-invasive strategies to reduce the environmental impact of livestock, this study assessed the ability of two plants, Typha latifolia and Thelypteris palustris, to bioaccumulate the heavy metals used in animal nutrition, from wastewater. Four mesocosms (width 2.0 m, length 2.0 m, 695 L of water, 210 kg of soil) were assembled outdoors at the Botanical Garden. Two of them were planted with T. latifolia (TL treated, n = 30; TL control, n = 30) and two with T. palustris (TP treated, n = 60; TP control, n = 60). In T0 a solution of a mineral additive premix (Zn 44.02 mg/L; Cu 8.63 mg/L) was dissolved in the treated mesocosms. At T0, d 15 (T1) and d 45 (T2) samples of roots, leaves, stems, soil and water were collected, dried, mineralized and analyzed using ICP-MS in order to obtain HMs content. We found that T. latifolia and T. palustris accumulate and translocate Zn, Cu from contaminated wastewater into plant tissues in a way that is directly related to the exposure time (T2 for Zn: 271.64 ±â€¯17.70, 409.26 ±â€¯17.70 for Cu: 47.54 ±â€¯3.56, 105.58 ±â€¯3.56 mg/kg of DM, respectively). No visual toxicity signs were observed during the experimental period. This phytoremediation approach could be used as an eco-sustainable approach to counteract the output of heavy metals.


Assuntos
Bioacumulação , Biodegradação Ambiental , Metais Pesados/farmacocinética , Typhaceae/metabolismo , Águas Residuárias/química , Animais , Cobre/farmacocinética , Gado , Metais Pesados/análise , Folhas de Planta/química , Raízes de Plantas/química , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/metabolismo , Typhaceae/crescimento & desenvolvimento , Zinco/análise , Zinco/farmacocinética
7.
Sci Total Environ ; 499: 497-509, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24913890

RESUMO

The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.


Assuntos
Agricultura/métodos , Mudança Climática , Zea mays/crescimento & desenvolvimento , Agricultura/normas , Secas , Itália , Nitrogênio/análise , Solo , Abastecimento de Água/estatística & dados numéricos , Zea mays/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA