Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Biosci ; 22(12): e2200156, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36048528

RESUMO

Rotator cuff tendon tears are common injuries of the musculoskeletal system that often require surgical repair. However, re-tearing following repair is a significant clinical problem, with a failure rate of up to 40%, notably at the transition from bone to tendon. The development of biphasic materials consisting of soft and hard components, which can mimic this interface, is therefore promising. Here, a simple manufacturing approach is proposed that combines electrospun filaments and 3D printing to achieve scaffolds made of a soft polydioxanone cuff embedded in a porous polycaprolactone block. The insertion area of the cuff is based on the supraspinatus tendon footprint and the size of the cuff is scaled up from 9 to 270 electrospun filaments to reach a clinically relevant strength of 227N on average. The biological evaluation shows that the biphasic scaffold components are noncytotoxic, and that tendon and bone cells can be grown on the cuff and block, respectively. Overall, these results indicate that combining electrospinning and 3D printing is a feasible and promising approach to create soft-to-hard biphasic scaffolds that can improve the outcomes of rotator cuff repair.


Assuntos
Lesões do Manguito Rotador , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Tendões/cirurgia , Impressão Tridimensional , Fenômenos Biomecânicos
2.
Front Pediatr ; 7: 330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482075

RESUMO

3D printing has recently become an affordable means of producing bespoke models and parts. This has now been extended to models produced from medical imaging, such as computed tomography (CT). Here we report the production of a selection of 3D models to compliment the available imaging data for a 12-month-old child with double-outlet right ventricle and two ventricular septal defects. The models were produced to assist with case management and surgical planning. We used both stereolithography and polyjet techniques to produce white rigid and flexible color models, respectively. The models were discussed both at the joint multidisciplinary meeting and between surgeon and cardiologist. From the blood pool model the clinicians were able to determine that the position of the coronary arteries meant an arterial switch operation was unlikely to be feasible. The soft myocardium model allowed the clinicians to assess the VSD anatomy and relationship with the aorta. The models, therefore, were of benefit in the development of the surgical plan. It was felt that the clinical situation was stable enough that an immediate intervention was not required, but the timing of any intervention would be dictated by decreasing oxygen saturation. Subsequently, the oxygen saturation of the patient did decrease and the decision was made to intervene. A further model was created to demonstrate the tricuspid apparatus. An arterial switch was ultimately performed without the LeCompte maneuver, the muscular VSD enlarged and baffled into the neo aortic root and the perimembranous VSD closed. At 1 month follow up SO2 was 100%, there was no breathlessness and no echocardiogram changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA