Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
J Natl Cancer Inst ; 116(2): 334-337, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37756683

RESUMO

Current guidelines recommend single variant testing in relatives of patients with known pathogenic or likely pathogenic germline variants in cancer predisposition genes. This approach may preclude the use of risk-reducing strategies in family members who have pathogenic or likely pathogenic germline variants in other cancer predisposition genes. Cascade testing using multigene panels was performed in 3696 relatives of 7433 probands. Unexpected pathogenic or likely pathogenic germline variants were identified in 230 (6.2%) relatives, including 144 who were negative for the familial pathogenic or likely pathogenic variant but positive for a pathogenic or likely pathogenic variant in a different gene than the proband and 74 who tested positive for the familial pathogenic or likely pathogenic variant and had an additional pathogenic or likely pathogenic variant in a different gene than the proband. Of the relatives with unexpected pathogenic or likely pathogenic germline variants, 36.3% would have qualified for different or additional cancer screening recommendations. Limiting cascade testing to only the familial pathogenic or likely pathogenic variant would have resulted in missed, actionable findings for a subset of relatives.


Assuntos
Predisposição Genética para Doença , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética , Testes Genéticos/métodos , Mutação em Linhagem Germinativa
3.
Ann Surg Oncol ; 31(1): 325-334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814187

RESUMO

BACKGROUND: Whereas the National Comprehensive Cancer Network (NCCN) criteria restrict germline-genetic testing (GGT) to a subset of breast cancer (BC) patients, the American Society of Breast Surgeons recommends universal GGT. Although the yield of pathogenic germline variants (PGV) in unselected BC patients has been studied, the practicality and utility of incorporating universal GGT into routine cancer care in community and rural settings is understudied. This study reports real-world implementation of universal GGT for patients with breast cancer and genetics-informed, treatment decision-making in a rural, community practice with limited resources. METHODS: From 2019 to 2022, all patients with breast cancer at a small, rural hospital were offered GGT, using a genetics-extender model. Statistical analyses included Fisher's exact test, t-tests, and calculation of odds ratios. Significance was set at p < 0.05. RESULTS: Of 210 patients with breast cancer who were offered GGT, 192 (91.4%) underwent testing with 104 (54.2%) in-criteria (IC) and 88 (45.8%) out-of-criteria (OOC) with NCCN guidelines. Pathogenic germline variants were identified in 25 patients (13.0%), with PGV frequencies of 15 of 104 (14.4%) in IC and ten of 88 (11.4%) in OOC patients (p = 0.495). GGT informed treatment for 129 of 185 (69.7%) patients. CONCLUSIONS: Universal GGT was successfully implemented in a rural, community practice with > 90% uptake. Treatment was enhanced or de-escalated in those with and without clinically actionable PGVs, respectively. Universal GGT for patients with breast cancer is feasible within rural populations, enabling optimization of clinical care to patients' genetic profile, and may reduce unnecessary healthcare, resource utilization.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/cirurgia , Predisposição Genética para Doença , População Rural , Testes Genéticos , Mutação em Linhagem Germinativa , Células Germinativas
5.
Am J Hum Genet ; 110(4): 551-564, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933558

RESUMO

DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Variações do Número de Cópias de DNA/genética , Testes Genéticos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
6.
JCO Glob Oncol ; 8: e2200104, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867948

RESUMO

PURPOSE: To report on pathogenic germline variants detected among individuals undergoing genetic testing for hereditary breast and/or ovarian cancer (HBOC) from Latin America and compare them with self-reported Hispanic individuals from the United States. METHODS: In this cross-sectional study, unrelated individuals with a personal/family history suggestive of HBOC who received clinician-ordered germline multigene sequencing were grouped according to the location of the ordering physician: group A, Mexico, Central America, and the Caribbean; group B, South America; and group C, United States with individuals who self-reported Hispanic ethnicity. Relatives who underwent cascade testing were analyzed separately. RESULTS: Among 24,075 unrelated probands across all regions, most were female (94.9%) and reported a personal history suggestive of HBOC (range, 65.0%-80.6%); the mean age at testing was 49.1 ± 13.1 years. The average number of genes analyzed per patient was highest in group A (A 63 ± 28, B 56 ± 29, and C 40 ± 28). Between 9.1% and 18.7% of patients had pathogenic germline variants in HBOC genes (highest yield in group A), with the majority associated with high HBOC risk. Compared with US Hispanics individuals the overall yield was significantly higher in both Latin American regions (A v C P = 1.64×10-9, B v C P < 2.2×10-16). Rates of variants of uncertain significance were similar across all three regions (33.7%-42.6%). Cascade testing uptake was low in all regions (A 6.6%, B 4.5%, and C 1.9%). CONCLUSION: This study highlights the importance of multigene panel testing in Latin American individuals with newly diagnosed or history of HBOC, who can benefit from medical management changes including targeted therapies, eligibility to clinical trials, risk-reducing surgeries, surveillance and prevention of secondary malignancy, and genetic counseling and subsequent cascade testing of at-risk relatives.


Assuntos
Neoplasias Ovarianas , Neoplasias da Mama , Carcinoma Epitelial do Ovário , Estudos Transversais , Feminino , Células Germinativas , Hispânico ou Latino/genética , Humanos , América Latina/epidemiologia , Masculino , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Prevalência , Estados Unidos/epidemiologia
7.
Genet Med ; 24(4): 821-830, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34961661

RESUMO

PURPOSE: The Mexican Jewish community (MJC) is a previously uncharacterized, genetically isolated group composed of Ashkenazi and Sephardi-Mizrahi Jews who migrated in the early 1900s. We aimed to determine the heterozygote frequency of disease-causing variants in 302 genes in this population. METHODS: We conducted a cross-sectional study of the MJC involving individuals representing Ashkenazi Jews, Sephardi-Mizrahi Jews, or mixed-ancestry Jews. We offered saliva-based preconception pan-ethnic expanded carrier screening, which examined 302 genes. We analyzed heterozygote frequencies of pathogenic/likely pathogenic variants and compared them with those in the Genome Aggregation Database (gnomAD). RESULTS: We recruited 208 participants. The carrier screening results showed that 72.1% were heterozygous for at least 1 severe disease-causing variant in 1 of the genes analyzed. The most common genes with severe disease-causing variants were CFTR (16.8% of participants), MEFV (11.5%), WNT10A (6.7%), and GBA (6.7%). The allele frequencies were compared with those in the gnomAD; 85% of variant frequencies were statistically different from those found in gnomAD (P <.05). Finally, 6% of couples were at risk of having a child with a severe disorder. CONCLUSION: The heterozygote frequency of at least 1 severe disease-causing variant in the MJC was 72.1%. The use of carrier screening in the MJC and other understudied populations could help parents make more informed decisions.


Assuntos
Etnicidade , Judeus , Criança , Estudos Transversais , Frequência do Gene/genética , Triagem de Portadores Genéticos/métodos , Testes Genéticos , Heterozigoto , Humanos , Judeus/genética , Pirina/genética
9.
Hum Mutat ; 41(12): 2028-2057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906214

RESUMO

Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Guias como Assunto , Sociedades Científicas , Bases de Dados Genéticas , Árvores de Decisões , Haplótipos/genética , Humanos , Fenótipo , Padrões de Referência
11.
Haematologica ; 105(4): 870-887, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32165484

RESUMO

The broad use of next-generation sequencing and microarray platforms in research and clinical laboratories has led to an increasing appreciation of the role of germline mutations in genes involved in hematopoiesis and lineage differentiation that contribute to myeloid neoplasms. Despite implementation of the American College of Medical Genetics and Genomics and Association for Molecular Pathology 2015 guidelines for sequence variant interpretation, the number of variants deposited in ClinVar, a genomic repository of genotype and phenotype data, and classified as having uncertain significance or being discordantly classified among clinical laboratories remains elevated and contributes to indeterminate or inconsistent patient care. In 2018, the American Society of Hematology and the Clinical Genome Resource co-sponsored the Myeloid Malignancy Variant Curation Expert Panel to develop rules for classifying gene variants associated with germline predisposition to myeloid neoplasia. Herein, we demonstrate application of our rules developed for the RUNX1 gene to variants in six examples to show how we would classify them within the proposed framework.


Assuntos
Hematologia , Neoplasias , Subunidade alfa 2 de Fator de Ligação ao Core , Variação Genética , Genótipo , Células Germinativas , Humanos , Estados Unidos
12.
Genet Med ; 22(5): 840-846, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32051609

RESUMO

PURPOSE: CTNNA1 is a potential diffuse gastric cancer risk gene, however CTNNA1 testing on multigene panel testing (MGPT) remains unstudied. METHODS: De-identified data from 151,425 individuals who underwent CTNNA1 testing at a commercial laboratory between October 2015 and July 2019 were reviewed. Tissue α-E-catenin immunohistochemistry was performed on CTNNA1 c.1351C>T (p.Arg451*) carriers. RESULTS: Fifty-two individuals (0.03% tested) had CTNNA1 loss-of-function (LOF) variants and 1057 individuals (0.7% tested) had a total of 302 distinct missense variants of uncertain significance. Detailed history was available on 33 CTNNA1 LOF carriers, with 21 unique CTNNA1 LOF variants. Four (12%) individuals had diffuse gastric cancer and 22 (67%) had breast cancer. Six (21%) and 24 (83%) of the 29 families reported a history of gastric or breast cancer, respectively. The CTNNA1 c.1351C>T nonsense variant was identified in three separate families with early-onset diffuse gastric cancer or breast cancer. Immunohistochemistry showed decreased α-E-catenin expression in gastric cancers. CONCLUSION: CTNNA1 LOF variants are detected on MGPT with a majority of these individuals having gastric or breast cancer. The overall risk of gastric cancer for CTNNA1 LOF carriers may be lower than expected. Given the uncertain phenotype and penetrance, management of individuals with CTNNA1 LOF variants remains challenging.


Assuntos
Neoplasias da Mama , Neoplasias Gástricas , alfa Catenina/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Predisposição Genética para Doença , Humanos , Penetrância , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
13.
Genet Med ; 22(2): 245-257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690835

RESUMO

PURPOSE: Copy-number analysis to detect disease-causing losses and gains across the genome is recommended for the evaluation of individuals with neurodevelopmental disorders and/or multiple congenital anomalies, as well as for fetuses with ultrasound abnormalities. In the decade that this analysis has been in widespread clinical use, tremendous strides have been made in understanding the effects of copy-number variants (CNVs) in both affected individuals and the general population. However, continued broad implementation of array and next-generation sequencing-based technologies will expand the types of CNVs encountered in the clinical setting, as well as our understanding of their impact on human health. METHODS: To assist clinical laboratories in the classification and reporting of CNVs, irrespective of the technology used to identify them, the American College of Medical Genetics and Genomics has developed the following professional standards in collaboration with the National Institutes of Health (NIH)-funded Clinical Genome Resource (ClinGen) project. RESULTS: This update introduces a quantitative, evidence-based scoring framework; encourages the implementation of the five-tier classification system widely used in sequence variant classification; and recommends "uncoupling" the evidence-based classification of a variant from its potential implications for a particular individual. CONCLUSION: These professional standards will guide the evaluation of constitutional CNVs and encourage consistency and transparency across clinical laboratories.


Assuntos
Variações do Número de Cópias de DNA/genética , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Anormalidades Múltiplas/genética , Consenso , Variação Genética/genética , Genoma Humano/genética , Genômica/normas , Humanos , Mutação/genética , Estados Unidos
14.
Blood Adv ; 3(20): 2962-2979, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31648317

RESUMO

Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Variação Genética , Mutação em Linhagem Germinativa , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/genética , Tomada de Decisão Clínica , Gerenciamento Clínico , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Genômica/métodos , Humanos , Fenótipo , Reprodutibilidade dos Testes
15.
Am J Med Genet C Semin Med Genet ; 178(2): 175-186, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30182442

RESUMO

Holoprosencephaly (HPE), a common developmental forebrain malformation, is characterized by failure of the cerebrum to completely divide into left and right hemispheres. The etiology of HPE is heterogeneous and a number of environmental and genetic factors have been identified. Cytogenetically visible alterations occur in 25% to 45% of HPE patients and cytogenetic techniques have long been used to study copy number variants (CNVs) in this disorder. The karyotype approach initially demonstrated several recurrent chromosomal anomalies, which led to the identification of HPE-specific loci and, eventually, several major HPE genes. More recently, higher-resolution cytogenetic techniques such as subtelomeric multiplex ligation-dependent probe amplification and chromosomal microarray have been used to analyze chromosomal anomalies. By using chromosomal microarray, we sought to identify submicroscopic chromosomal deletions and duplications in patients with HPE. In an analysis of 222 individuals with HPE, a deletion or duplication was detected in 107 individuals. Of these 107 individuals, 23 (21%) had variants that were classified as pathogenic or likely pathogenic by board-certified medical geneticists. We identified multiple patients with deletions in established HPE loci as well as three patients with deletions encompassed by 6q12-q14.3, a CNV previously reported by Bendavid et al. In addition, we identified a new locus, 16p13.2 that warrants further investigation for HPE association. Incidentally, we also found a case of Potocki-Lupski syndrome, a case of Phelan-McDermid syndrome, and multiple cases of 22q11.2 deletion syndrome within our cohort. These data confirm the genetically heterogeneous nature of HPE, and also demonstrate clinical utility of chromosomal microarray in diagnosing patients affected by HPE.


Assuntos
Aberrações Cromossômicas , Estudos de Associação Genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Citogenética/métodos , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Cariotipagem , Masculino , Fenótipo , Adulto Jovem
16.
Hum Mutat ; 39(12): 1875-1884, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157302

RESUMO

SMAD2 is a downstream effector in the TGF-ß signaling pathway, which is important for pattern formation and tissue differentiation. Pathogenic variants in SMAD2 have been reported in association with arterial aneurysms and dissections and in large cohorts of subjects with complex congenital heart disease (CHD). We used whole exome sequencing (WES) to investigate the molecular cause of CHD and other congenital anomalies in three probands and of an arterial aneurysm in an additional patient. Patients 1 and 2 presented with complex CHD, developmental delay, seizures, dysmorphic features, short stature, and poor weight gain. Patient 3 was a fetus with complex CHD and heterotaxy. The fourth patient is an adult female with aortic root aneurysm and physical features suggestive of a connective tissue disorder. WES identified pathogenic truncating variants, a splice variant, and a predicted deleterious missense variant in SMAD2. We compare the phenotypes and genotypes in our patients with previously reported cases. Our data suggest two distinct phenotypes associated with pathogenic variants in SMAD2: complex CHD with or without laterality defects and other congenital anomalies, and a late-onset vascular phenotype characterized by arterial aneurysms with connective tissue abnormalities.


Assuntos
Aneurisma Aórtico/genética , Cardiopatias Congênitas/genética , Mutação , Proteína Smad2/genética , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Pessoa de Meia-Idade , Fenótipo , Gravidez , Sequenciamento do Exoma/métodos
17.
Genet Med ; 18(7): 696-704, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26633542

RESUMO

PURPOSE: We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory. METHODS: WES was performed for many different clinical indications and included the proband plus two or more family members in 76% of cases. RESULTS: The overall diagnostic yield of WES was 28.8%. The diagnostic yield was 23.6% in proband-only cases and 31.0% when three family members were analyzed. The highest yield was for patients who had disorders involving hearing (55%, N = 11), vision (47%, N = 60), the skeletal muscle system (40%, N = 43), the skeletal system (39%, N = 54), multiple congenital anomalies (36%, N = 729), skin (32%, N = 31), the central nervous system (31%, N = 1,082), and the cardiovascular system (28%, N = 54). Of 2,091 cases in which secondary findings were analyzed for 56 American College of Medical Genetics and Genomics-recommended genes, 6.2% (N = 129) had reportable pathogenic variants. In addition to cases with a definitive diagnosis, in 24.2% of cases a candidate gene was reported that may later be reclassified as being associated with a definitive diagnosis. CONCLUSION: Our experience with our first 3,040 WES cases suggests that analysis of trios significantly improves the diagnostic yield compared with proband-only testing for genetically heterogeneous disorders and facilitates identification of novel candidate genes.Genet Med 18 7, 696-704.


Assuntos
Doenças Genéticas Inatas/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Exoma/genética , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/epidemiologia , Humanos , Mutação , Análise de Sequência de DNA/métodos
18.
Genet Med ; 18(8): 823-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26681312

RESUMO

PURPOSE: Germ-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g., BRCA1/2, MLH1, MSH2) as well as more recently identified cancer genes (e.g., PALB2, BRIP1), many of which have increased but less well-defined penetrance. METHODS: Clinical genetic testing was performed on over 10,000 consecutive cases referred for evaluation of germ-line cancer genes, and results were analyzed for frequency of pathogenic or likely pathogenic variants, and were stratified by testing panel, gene, and clinical history. RESULTS: Overall, a molecular diagnosis was made in 9.0% of patients tested, with the highest yield in the Lynch syndrome/colorectal cancer panel. In patients with breast, ovarian, or colon/stomach cancer, positive yields were 9.7, 13.4, and 14.8%, respectively. Approximately half of the pathogenic variants identified in patients with breast or ovarian cancer were in genes other than BRCA1/2. CONCLUSION: The high frequency of positive results in a wide range of cancer genes, including those of high penetrance and with clinical care guidelines, underscores both the genetic heterogeneity of hereditary cancer and the usefulness of multigene panels over genetic tests of one or two genes.Genet Med 18 8, 823-832.


Assuntos
Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência
19.
Am J Obstet Gynecol ; 213(2): 214.e1-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25843063

RESUMO

OBJECTIVE: We sought to determine the positive predictive value (PPV) of noninvasive prenatal screening (NIPS) for various aneuploidies based on cases referred for follow-up cytogenetic testing. Secondarily, we wanted to determine the false-negative (FN) rate for those cases with a negative NIPS result. STUDY DESIGN: We compared the cytogenetic findings (primarily from chromosome analysis) from 216 cases referred to our laboratories with either a positive or negative NIPS result, and classified NIPS results as true positive, false positive, true negative, or FN. Diagnostic cytogenetic testing was performed on the following tissue types: amniotic fluid (n = 137), chorionic villi (n = 69), neonatal blood (n = 6), and products of conception (n = 4). RESULTS: The PPV for NIPS were as follows: 93% for trisomy (T)21 (n = 99; 95% confidence interval [CI], 86-97.1%), 58% for T18 (n = 24; 95% CI, 36.6-77.9%), 45% for T13 (n = 11; 95% CI, 16.7-76.6%), 23% for monosomy X (n = 26; 95% CI, 9-43.6%), and 67% for XXY (n = 6; 95% CI, 22.3-95.7%). Of the 26 cases referred for follow-up cytogenetics after a negative NIPS result, 1 (4%) was FN (T13). Two cases of triploidy, a very serious condition but one not claimed to be detectable by the test providers, were among those classified as true negatives. CONCLUSION: T21, which has the highest prevalence of all aneuploidies, demonstrated a high true-positive rate, resulting in a high PPV. However, the other aneuploidies, with their lower prevalence, displayed relatively high false-positive rates and, therefore, lower PPV. Patients and physicians must fully understand the limitations of this screening test and the need in many cases to follow up with appropriate diagnostic testing to obtain an accurate diagnosis.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , DNA/sangue , Adulto , Amniocentese , Aneuploidia , Amostra da Vilosidade Coriônica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , Estudos de Coortes , Análise Citogenética , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Reações Falso-Negativas , Feminino , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Valor Preditivo dos Testes , Gravidez , Diagnóstico Pré-Natal , Estudos Retrospectivos , Trissomia/diagnóstico , Trissomia/genética , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18 , Síndrome de Turner/diagnóstico , Síndrome de Turner/genética
20.
Genet Med ; 17(8): 623-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25356966

RESUMO

PURPOSE: Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. METHODS: Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. RESULTS: In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. CONCLUSION: These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.


Assuntos
Hibridização Genômica Comparativa/métodos , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Exoma , Algoritmos , Estudos de Coortes , DNA/análise , DNA/sangue , DNA/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA