Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Lipid Res ; 65(5): 100540, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570093

RESUMO

Intestinal epithelial cells convert excess fatty acids into triglyceride (TAG) for storage in cytoplasmic lipid droplets and secretion in chylomicrons. Nuclear lipid droplets (nLDs) are present in intestinal cells but their origin and relationship to cytoplasmic TAG synthesis and secretion is unknown. nLDs and related lipid-associated promyelocytic leukemia structures (LAPS) were abundant in oleate-treated Caco2 but less frequent in other human colorectal cancer cell lines and mouse intestinal organoids. nLDs and LAPS in undifferentiated oleate-treated Caco2 cells harbored the phosphatidate phosphatase Lipin1, its product diacylglycerol, and CTP:phosphocholine cytidylyltransferase (CCT)α. CCTα knockout Caco2 cells had fewer but larger nLDs, indicating a reliance on de novo PC synthesis for assembly. Differentiation of Caco2 cells caused large nLDs and LAPS to form regardless of oleate treatment or CCTα expression. nLDs and LAPS in Caco2 cells did not associate with apoCIII and apoAI and formed dependently of microsomal triglyceride transfer protein expression and activity, indicating they are not derived from endoplasmic reticulum luminal LDs precursors. Instead, undifferentiated Caco2 cells harbored a constitutive pool of nLDs and LAPS in proximity to the nuclear envelope that expanded in size and number with oleate treatment. Inhibition of TAG synthesis did affect the number of nascent nLDs and LAPS but prevented their association with promyelocytic leukemia protein, Lipin1α, and diacylglycerol, which instead accumulated on the nuclear membranes. Thus, nLD and LAPS biogenesis in Caco2 cells is not linked to lipoprotein secretion but involves biogenesis and/or expansion of nascent nLDs by de novo lipid synthesis.

2.
J Clin Immunol ; 44(4): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578354

RESUMO

INTRODUCTION: The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS: In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS: STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION: In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.


Assuntos
Candidíase Mucocutânea Crônica , Inibidores de Janus Quinases , Linfopenia , Nitrilas , Pirazóis , Pirimidinas , Trombocitopenia , Adulto , Humanos , Mutação com Ganho de Função , Inibidores de Janus Quinases/uso terapêutico , Candidíase Mucocutânea Crônica/tratamento farmacológico , Candidíase Mucocutânea Crônica/genética , Interferons , Fator de Transcrição STAT1/metabolismo
3.
Cell Rep ; 43(2): 113744, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329874

RESUMO

Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Animais , Camundongos , Síndrome de Zellweger/metabolismo , Peroxissomos/metabolismo , Apresentação de Antígeno , Transtornos Peroxissômicos/metabolismo
4.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883568

RESUMO

WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and ß-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.


Assuntos
Proteínas de Ligação ao GTP , Doenças da Imunodeficiência Primária , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/imunologia , beta-Arrestinas/genética , beta-Arrestinas/imunologia , Cálcio/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neutropenia/genética , Neutropenia/imunologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Verrugas/genética , Verrugas/imunologia
5.
Front Cell Dev Biol ; 10: 856243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756999

RESUMO

Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.

6.
Front Immunol ; 12: 673487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936120

RESUMO

DOCK8 deficiency is a combined immunodeficiency due to biallelic variants in dedicator of cytokinesis 8 (DOCK8) gene. The disease has a wide clinical spectrum encompassing recurrent infections (candidiasis, viral and bacterial infections), virally driven malignancies and immune dysregulatory features, including autoimmune (cytopenia and vasculitis) as well as allergic disorders (eczema, asthma, and food allergy). Hypomorphic function and somatic reversion of DOCK8 has been reported to result in incomplete phenotype without IgE overproduction. Here we describe a case of DOCK8 deficiency in a 8-year-old Caucasian girl. The patient's disease was initially classified as autoimmune thrombocytopenia, which then evolved toward a combined immunodeficiency phenotype with recurrent infections, persistent EBV infection and lymphoproliferation. Two novel variants (one deletion and one premature stop codon) were characterized, resulting in markedly reduced, but not absent, DOCK8 expression. Somatic reversion of the DOCK8 deletion was identified in T cells. Hypomorphic function and somatic reversion were associated with restricted T cell repertoire, decreased STAT5 phosphorylation and impaired immune synapse functioning in T cells. Although the patient presented with incomplete phenotype (absence of markedly increase IgE and eosinophil count), sclerosing cholangitis was incidentally detected, thus indicating that hypomorphic function and somatic reversion of DOCK8 may delay disease progression but do not necessarily prevent from severe complications.


Assuntos
Colangite Esclerosante/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doenças da Imunodeficiência Primária/genética , Criança , Feminino , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA