Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Micromachines (Basel) ; 14(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37763909

RESUMO

Natural enzymes are used as special reagents for the preparation of electrochemical (bio)sensors due to their ability to catalyze processes, improving the selectivity of detection. However, some drawbacks, such as denaturation in harsh experimental conditions and their rapid de- gradation, as well as the high cost and difficulties in recycling them, restrict their practical applications. Nowadays, the use of artificial enzymes, mostly based on nanomaterials, mimicking the functions of natural products, has been growing. These so-called nanozymes present several advantages over natural enzymes, such as enhanced stability, low cost, easy production, and rapid activity. These outstanding features are responsible for their widespread use in areas such as catalysis, energy, imaging, sensing, or biomedicine. These materials can be divided into two main groups: metal and carbon-based nanozymes. The latter provides additional advantages compared to metal nanozymes, i.e., stable and tuneable activity and good biocompatibility, mimicking enzyme activities such as those of peroxidase, catalase, oxidase, superoxide dismutase, nuclease, or phosphatase. In this review article, we have focused on the use of carbon-based nanozymes for the preparation of electrochemical (bio)sensors. The main features of the most recent applications have been revised and illustrated with examples selected from the literature over the last four years (since 2020).

2.
Cancers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37046764

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53ß, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms' seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.

3.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679633

RESUMO

The study of the human microbiome is a multidisciplinary area ranging from the field of technology to that of personalized medicine. The possibility of using microbiota biomarkers to improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical chemistry. The well-known advantages of electrochemical biosensors-high sensitivity, fast response, and the possibility of miniaturization, together with the potential for new nanomaterials to improve their design and performance-position them as unique tools to provide a better understanding of the entities of the human microbiome and raise the prospect of huge and important developments in the coming years. This review article compiles recent applications of electrochemical (bio)sensors for monitoring microbial metabolites and disease biomarkers related to different types of human microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical devices applied to real samples are critically discussed, as well as challenges to be faced and where future developments are expected to go.


Assuntos
Técnicas Biossensoriais , Microbiota , Nanoestruturas , Humanos , Técnicas Eletroquímicas/métodos , Biomarcadores , Técnicas Biossensoriais/métodos
4.
Nanomaterials (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352731

RESUMO

Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.

5.
Biosensors (Basel) ; 10(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660011

RESUMO

Screen-printing technology has revolutionized many fields, including that of electrochemical biosensing. Due to their current relevance, this review, unlike other papers, discusses the relevant aspects of electrochemical biosensors manufactured using this technology in connection to both paper substrates and wearable formats. The main trends, advances, and opportunities provided by these types of devices, with particular attention to the environmental and biomedical fields, are addressed along with illustrative fundamentals and applications of selected representative approaches from the recent literature. The main challenges and future directions to tackle in this research area are also pointed out.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrodos , Transdutores
6.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560028

RESUMO

Nowadays, electrochemical biosensors are reliable analytical tools to determine a broad range of molecular analytes because of their simplicity, affordable cost, and compatibility with multiplexed and point-of-care strategies. There is an increasing demand to improve their sensitivity and selectivity, but also to provide electrochemical biosensors with important attributes such as near real-time and continuous monitoring in complex or denaturing media, or in vivo with minimal intervention to make them even more attractive and suitable for getting into the real world. Modification of biosensors surfaces with antibiofouling reagents, smart coupling with nanomaterials, and the advances experienced by folded-based biosensors have endowed bioelectroanalytical platforms with one or more of such attributes. With this background in mind, this review aims to give an updated and general overview of these technologies as well as to discuss the remarkable achievements arising from the development of electrochemical biosensors free of reagents, washing, or calibration steps, and/or with antifouling properties and the ability to perform continuous, real-time, and even in vivo operation in nearly autonomous way. The challenges to be faced and the next features that these devices may offer to continue impacting in fields closely related with essential aspects of people's safety and health are also commented upon.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Nanoestruturas , Incrustação Biológica , Calibragem , Sistemas Automatizados de Assistência Junto ao Leito
7.
Theranostics ; 10(7): 3022-3034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194852

RESUMO

Background and Purpose: The humoral immune response in cancer patients can be used for early detection of the disease. Autoantibodies raised against tumor-associated antigens (TAAs) are promising clinical biomarkers for reliable cancer diagnosis, prognosis, and therapy monitoring. In this study, an electrochemical disposable multiplexed immunosensing platform able to integrate difficult- and easy-to-express colorectal cancer (CRC) TAAs is reported for the sensitive determination of eight CRC-specific autoantibodies. Methods: The electrochemical immunosensing approach involves the use of magnetic microcarriers (MBs) as solid supports modified with covalently immobilized HaloTag fusion proteins for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric responses measured using the hydroquinone (HQ)/H2O2 system were related to the levels of autoantibodies in plasma. Results: The biosensing platform was applied to the analysis of autoantibodies against 8 TAAs described for the first time in this work in plasma samples from healthy asymptomatic individuals (n=3), and patients with high-risk of developing CRC (n=3), and from patients already diagnosed with colorectal (n=3), lung (n=2) or breast (n=2) cancer. The developed bioplatform demonstrated an improved discrimination between CRC patients and controls (asymptomatic healthy individuals and breast and lung cancer patients) compared to an ELISA-like luminescence test. Conclusions: The proposed methodology uses a just-in-time produced protein in a simpler protocol, with low sample volume, and involves cost-effective instrumentation, which could be used in a high-throughput manner for reliable population screening to facilitate the detection of early CRC patients at affordable cost.


Assuntos
Anticorpos Antineoplásicos/sangue , Autoanticorpos/sangue , Técnicas Biossensoriais , Neoplasias Colorretais/diagnóstico , Técnicas Eletroquímicas/métodos , Especificidade de Anticorpos , Antígenos de Neoplasias/imunologia , Área Sob a Curva , Doenças Assintomáticas , Biomarcadores Tumorais , Neoplasias da Mama/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/imunologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Feminino , Humanos , Hidroquinonas , Proteínas Imobilizadas/imunologia , Neoplasias Pulmonares/sangue , Masculino , Curva ROC , Proteínas Recombinantes de Fusão/imunologia , Sensibilidade e Especificidade
8.
Biosensors (Basel) ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041251

RESUMO

The presence of allergens and adulterants in food, which represents a real threat to sensitized people and a loss of consumer confidence, is one of the main current problems facing society. The detection of allergens and adulterants in food, mainly at the genetic level (characteristic fragments of genes that encode their expression) or at functional level (protein biomarkers) is a complex task due to the natural interference of the matrix and the low concentration at which they are present. Methods for the analysis of allergens are mainly divided into immunological and deoxyribonucleic acid (DNA)-based assays. In recent years, electrochemical affinity biosensors, including immunosensors and biosensors based on synthetic sequences of DNA or ribonucleic acid (RNA), linear, aptameric, peptide or switch-based probes, are gaining special importance in this field because they have proved to be competitive with the methods commonly used in terms of simplicity, test time and applicability in different environments. These unique features make them highly promising analytical tools for routine determination of allergens and food adulterations at the point of care. This review article discusses the most significant trends and developments in electrochemical affinity biosensing in this field over the past two years as well as the challenges and future prospects for this technology.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Hipersensibilidade Alimentar/metabolismo , Humanos
9.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396710

RESUMO

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today's clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Assuntos
Técnicas Biossensoriais , Citocinas , Neoplasias , Biomarcadores , Técnicas Eletroquímicas , Humanos , Neoplasias/diagnóstico
10.
Biosensors (Basel) ; 9(4)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671772

RESUMO

This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015-2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ciências Forenses
11.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739523

RESUMO

In the last fifteen years, the nucleic acid biosensors and delivery area has seen a breakthrough due to the interrelation between the recognition of nucleic acid's high specificity, the great sensitivity of electrochemical and optical transduction and the unprecedented opportunities imparted by nanotechnology. Advances in this area have demonstrated that the assembly of nanoscaled materials allows the performance enhancement, particularly in terms of sensitivity and response time, of functional nucleic acids' biosensing and delivery to a level suitable for the construction of point-of-care diagnostic tools. Consequently, this has propelled detection methods using nanomaterials to the vanguard of the biosensing and delivery research fields. This review overviews the striking advancement in functional nanomaterials' assisted biosensing and delivery of nucleic acids. We highlight the advantages demonstrated by selected well-known and rising star functional nanomaterials (metallic, magnetic and Janus nanomaterials) focusing on the literature produced in the past five years.

12.
Sci Rep ; 9(1): 11916, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417117

RESUMO

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.


Assuntos
Técnicas Biossensoriais , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Oxazóis/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Fenômenos Magnéticos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxazóis/química , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
ACS Appl Mater Interfaces ; 10(37): 31032-31043, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30141615

RESUMO

In the recent years, targeted cancer theranosis, the concomitant therapeutic treatment and selective visualization of cancerous tissue, has become a powerful strategy to improve patient prognosis. In this context, targeted multimodal molecular imaging, the combination of different imaging modalities overcoming their individual limitations, has attracted great attention. Due to their unique properties, advanced nanomaterials have taken center stage in the development of theranostics. In this work, we report a novel Janus nanoplatform by combining an Fe3O4 NPs/mesoporous silica core@shell face together with an Au nanoparticle face. Due to its anisotropy, this hybrid nanomaterial enabled the orthogonal site-selective modification of each face permitting the incorporation of a targeting peptide for cancer detection (cRGD) and a fluorescent dye. Due to the intrinsic characteristics of this Janus nanoplatform together with those selectively generated on their surfaces, the resulting hybrid nanocarrier successfully promoted the in vivo tumor-targeted multimodal imaging by magnetic resonance (Fe3O4 core), computed tomography (AuNP face), and fluorescent tracking (fluorescent dye loading) in a fibrosarcoma-bearing mouse model. The achieved results endorse these hybrid Janus nanoparticles as a powerful and flexible platform with integrated imaging and carrier functionalities to be equipped with therapeutic features to generate an advanced multifunctional nanocarrier for targeted cancer theranosis.


Assuntos
Imagem Multimodal/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Compostos Férricos/química , Camundongos , Dióxido de Silício/química , Nanomedicina Teranóstica
14.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099764

RESUMO

Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.


Assuntos
Técnicas Biossensoriais/métodos , Doenças Transmissíveis/diagnóstico , Eletroquímica , Biópsia Líquida , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas Biossensoriais/normas , Humanos
15.
Biosensors (Basel) ; 7(4)2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-29137135

RESUMO

A biosensor for 3-hydroxybutyrate (3-HB) involving immobilization of the enzyme 3-hydroxybutyrate dehydrogenase onto a screen-printed carbon electrode modified with reduced graphene oxide (GO) and thionine (THI) is reported here. After addition of 3-hydroxybutyrate or the sample in the presence of NAD⁺ cofactor, the generated NADH could be detected amperometrically at 0.0 V vs. Ag pseudo reference electrode. Under the optimized experimental conditions, a calibration plot for 3-HB was constructed showing a wide linear range between 0.010 and 0.400 mM 3-HB which covers the clinically relevant levels for diluted serum samples. In addition, a limit of detection of 1.0 µM, much lower than that reported using other biosensors, was achieved. The analytical usefulness of the developed biosensor was demonstrated via application to spiked serum samples.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Técnicas Biossensoriais , Eletrodos/estatística & dados numéricos , Grafite/metabolismo , Fenotiazinas/metabolismo
16.
Sensors (Basel) ; 17(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858236

RESUMO

The rapid and accurate determination of specific circulating biomarkers at different molecular levels with non- or minimally invasive methods constitutes a major challenge to improve the breast cancer outcomes and life quality of patients. In this field, electrochemical biosensors have demonstrated to be promising alternatives against more complex conventional strategies to perform fast, accurate and on-site determination of circulating biomarkers at low concentrations in minimally treated body fluids. In this article, after discussing briefly the relevance and current challenges associated with the determination of breast cancer circulating biomarkers, an updated overview of the electrochemical affinity biosensing strategies emerged in the last 5 years for this purpose is provided highlighting the great potentiality of these methodologies. After critically discussing the most interesting features of the electrochemical strategies reported so far for the single or multiplexed determination of such biomarkers with demonstrated applicability in liquid biopsy analysis, existing challenges still to be addressed and future directions in this field will be pointed out.


Assuntos
Neoplasias da Mama/diagnóstico , Biomarcadores Tumorais , Técnicas Biossensoriais , Mama , Técnicas Eletroquímicas , Humanos
17.
Sensors (Basel) ; 17(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420103

RESUMO

Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid-based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field.


Assuntos
Técnicas Eletroquímicas , Biomarcadores , Técnicas Biossensoriais , DNA , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
18.
Anal Chim Acta ; 887: 51-58, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26320785

RESUMO

A novel amperometric magnetoimmunoassay, based on the use of core-shell magnetic nanoparticles and screen-printed carbon electrodes, was developed for the selective determination of Legionella pneumophila SG1. A specific capture antibody (Ab) was linked to the poly(dopamine)-modified magnetic nanoparticles (MNPs@pDA-Ab) and incubated with bacteria. The captured bacteria were sandwiched using the antibody labeled with horseradish peroxidase (Ab-HRP), and the resulting MNPs@pDA-Ab-Legionella neumophila-Ab-HRP were captured by a magnetic field on the electrode surface. The amperometric response measured at -0.15 V vs. Ag pseudo-reference electrode of the SPCE after the addition of H2O2 in the presence of hydroquinone (HQ) was used as transduction signal. The achieved limit of detection, without pre-concentration or pre-enrichment steps, was 10(4) Colony Forming Units (CFUs) mL(-1). The method showed a good selectivity and the MNPs@pDA-Ab exhibited a good stability during 30 days. The possibility of detecting L. pneumophila at 10 CFU mL(-1) level in less than 3 h, after performing a membrane-based preconcentration step, was also demonstrated.


Assuntos
Anticorpos Imobilizados/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Indóis/química , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/microbiologia , Nanopartículas de Magnetita/química , Polímeros/química , Técnicas Biossensoriais/métodos , Humanos , Doença dos Legionários/diagnóstico , Limite de Detecção
19.
J Microbiol Methods ; 103: 25-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858449

RESUMO

A disposable PCR-based amperometric magneto-genosensor for detection and identification of Streptococcus pneumoniae was evaluated. ROC curve analysis used to determine optimal signal cutoff values yielded a sensitivity of 91% and a specificity of 90%. The method was also tested for the direct detection of pneumococci in clinical samples.


Assuntos
Técnicas Biossensoriais , Infecções Pneumocócicas/diagnóstico , Streptococcus pneumoniae/genética , Genes Bacterianos , Humanos , Reação em Cadeia da Polimerase/métodos , Curva ROC , Reprodutibilidade dos Testes
20.
J Mater Chem B ; 2(6): 739-746, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261292

RESUMO

Novel core-shell Fe3O4@poly(dopamine) magnetic nanoparticles were prepared through an in situ self-polymerization method. The hybrid nanomaterial showed an average core diameter of 11 ± 3 nm and a polymer thin film thickness of 1.8 ± 0.2 nm. The core-shell nanoparticles were employed as solid supports for the covalent immobilization of horseradish peroxidase (HRP), and the resulting biofunctionalized magnetic nanoparticles were employed to construct an amperometric biosensor for H2O2. The enzyme biosensor showed a high sensitivity of 442.14 mA M-1 cm-2, a low limit of detection of 182 nM, a wide linear range from 6.0 × 10-7 to 8.0 × 10-4 M and high stability for 1 month.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA