Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Bio Eng ; 1(1): 44-52, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38434799

RESUMO

Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.

2.
Ind Eng Chem Res ; 62(12): 5326-5335, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37014371

RESUMO

The Abraham and NRTL-SAC semipredictive models were employed to represent the solubility of (-)-borneol, (1R)-(+)-camphor, l-(-)-menthol, and thymol in water and organic solvents, using data measured in this work and collected from the literature. A reduced set of solubility data was used to estimate the model parameters of the solutes, and global average relative deviations (ARDs) of 27% for the Abraham model and 15% for the NRTL-SAC model were obtained. The predictive capability of these models was tested by estimating the solubilities in solvents not included in the correlation step. Global ARDs of 8% (Abraham model) and 14% (NRTL-SAC model) were obtained. Finally, the predictive COSMO-RS model was used to describe the solubility data in organic solvents, with ARD of 16%. These results show the overall better performance of NRTL-SAC in a hybrid correlation/prediction approach, while COSMO-RS can produce very satisfactory predictions even in the absence of any experimental data.

3.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985428

RESUMO

The potentialities of methylimidazolium-based ionic liquids (ILs) as solvents were evaluated for some relevant separation problems-terpene fractionation and fuel processing-studying selectivities, capacities, and solvent performance indices. The activity coefficients at infinite dilution of the solute (1) in the IL (3), γ13∞, of 52 organic solutes were measured by inverse gas chromatography over a temperature range of 333.2-453.2 K. The selected ILs are 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], and the equimolar mixture of [C4mim][PF6] and 1-butyl-3-methylimidazolium chloride, [C4mim]Cl. Generally, low polar solutes follow γ1,C4mimCl∞ > γ1,C4mimPF6+C4mimCl∞ > γ1,C4mimPF6∞ while the opposite behavior is observed for alcohols and water. For citrus essential oil deterpenation, the results suggest that cations with long alkyl chains, such as C12mim+, promote capacity, while selectivity depends on the solute polarity. Promising results were obtained for the separation of several model mixtures relevant to fuel industries using the equimolar mixture of [C4mim][PF6] and [C4mim]Cl. This work demonstrates the importance of tailoring the polarity of the solvents, suggesting the use of ILs with mixed anions as alternative solvents for the removal of aliphatic hydrocarbons and contaminants from fuels.

4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838595

RESUMO

Anthocyanins from juçara fruits were extracted by pressurized liquid extraction (PLE) or ultrasound-assisted extraction (UAE), using aqueous solutions of 1,2-alkanediols and glycerol ethers as biobased solvents. The PLE (100 bar, 13 min, 1 mL/min flow rate) in the optimal extraction conditions originated 23.1 mganthocyanins·gdry biomass-1. On the other hand, the UAE was 10 min long, and the optimal conditions using 1,2-propanediol were 42.6 wt%, 160 W, and pH 7.0, leading to 50 mganthocyanins·gdry biomass-1. Extractions at the UAE optimized conditions, with aqueous solutions of five different 1,2-alkanediols and three glycerol ethers were performed, and compared to water and ethanolic extracts. The biobased solvent solutions presented anthocyanin yields up to 33% higher than water, and were shown to be as efficient as ethanol/water, but generated extracts with higher antioxidant capacity. The anthocyanin-rich extract of juçara, obtained with 1,2-propanediol, was used in the production of a natural soap and incorporated into a cream, showing that the addition of the juçara extract resulted in an antioxidant capacity in both products.


Assuntos
Euterpe , Frutas , Frutas/química , Antocianinas , Antioxidantes/análise , Propilenoglicol , Solventes , Água , Etanol , Extratos Vegetais
5.
J Chem Eng Data ; 67(6): 1565-1572, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-36568723

RESUMO

The solubilities of glycine, l-leucine, l-phenylalanine, and l-aspartic acid were measured in aqueous MgCl2, Mg(NO3)2, CaCl2,, and Ca(NO3)2 solutions with concentrations ranging from 0 to 2 mol/kg at 298.2 K. The isothermal analytical method was used combined with the refractive index measurements for composition analysis guaranteeing good accuracy. All salts induced a salting-in effect with a higher magnitude for those containing the Ca2+ cation. The nitrate anions also showed stronger binding with the amino acids, thus increasing their relative solubility more than the chloride anions. In particular, calcium nitrate induces an increase in the amino acid solubility from 2.4 (glycine) to 4.6 fold (l-aspartic acid) compared to the corresponding value in water. Amino acid solubility data in aqueous MgCl2 and CaCl2 solutions collected from the open literature were combined with that from this work, allowing us to analyze the relations between the amino acid structure and the salting-in magnitude.

6.
Energy Fuels ; 36(15): 8552-8561, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36570635

RESUMO

Relevant chemical separations for the petrochemical and chemical industries include the removal of aromatic hydrocarbons from aliphatics, the desulfurization and denitrification of fuels, and the separation of azeotropic mixtures containing alkanols. In an attempt to contribute to the development of novel technologies, the potentialities of imidazolium chloride ionic liquid (IL) mixtures as separation agents were investigated. Selectivities, capacities, and solvent performance indices were calculated through the activity coefficients at infinite dilution of organic solutes and water in the imidazolium chloride IL: [C8mim]Cl, [C12mim]Cl, and the equimolar mixture of [C4mim]Cl and [C12mim]Cl. Results show that the imidazolium chloride IL might be appropriately tailored for specific purposes, in which an increase in the proportion of cations containing larger alkyl chains tends to increase the overall affinity with organic solutes. The IL designer solvent concept was explored by comparing the IL equimolar mixture results with the intermediary [C8mim]Cl. The COSMO-RS thermodynamic model was also applied, showing it to be a promising tool for a fast qualitative screening of potential separation agents for specific separation processes.

7.
Phys Chem Chem Phys ; 24(24): 14886-14897, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674089

RESUMO

The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.

8.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565999

RESUMO

The formation of deep eutectic solvents (DES) is tied to negative deviations to ideality caused by the establishment of stronger interactions in the mixture than in the pure DES precursors. This work tested thymol and menthol as hydrogen bond donors when combined with different flavonoids. Negative deviations from ideality were observed upon mixing thymol with either flavone or flavanone, two parent flavonoids that only have hydrogen bond acceptor (HBA) groups, thus forming non-ionic DES (Type V). On the other hand, the menthol systems with the same compounds generally showed positive deviations from ideality. That was also the case with the mixtures containing the more complex hydroxylated flavonoid, hesperetin, which resulted in positive deviations when mixed with either thymol or menthol. COSMO-RS successfully predicted the behavior of the solid-liquid phase diagram of the studied systems, allowing for evaluation of the impact of the different contributions to the intermolecular interactions, and proving to be a good tool for the design of DES.


Assuntos
Solventes Eutéticos Profundos , Flavonoides , Mentol , Solventes/química , Terpenos , Timol
9.
J Agric Food Chem ; 70(22): 6573-6590, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621387

RESUMO

The awareness of sustainability approaches has focused attention on replacing synthetic emulsifiers with natural alternatives when formulating nanoemulsions. In this context, a comprehensive review of the different types of saponins being successfully used to form and stabilize nanoemulsions is presented, highlighting the most common natural sources and biosynthetic routes. Processes for their extraction and purification are also reviewed altogether with the recent advances for their characterization. Concerning the preparation of the nanoemulsions containing saponins, the focus has been initially given to screening methods, lipid phase used, and production procedures, but their characterization and delivery systems explored are also discussed. Most experimental outcomes showed that the saponins present high performance, but the challenges associated with the saponins' broader application, mainly the standardization for industrial use, are identified. Future perspectives report, among others, the emerging biotechnological processes and the use of byproducts in a circular economy context.


Assuntos
Saponinas , Emulsificantes , Emulsões
10.
Phys Chem Chem Phys ; 24(13): 7624-7634, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35294517

RESUMO

Inspired by the recently proposed cooperative mechanism of hydrotropy, where water molecules mediate the aggregation of hydrotrope around the solute, this work studies the impact of apolar volume and polar group position on the performance of hydrotropes. To do so, the ability of two different families of alkanediols (1,2-alkanediols and 1,n-alkanediols) to increase the aqueous solubility of syringic acid is initially investigated. Interestingly, it is observed that in the dilute region (low hydrotrope concentration), the relative position of the hydroxyl groups of the alkanediols does not impact their performance. Instead, their ability to increase the solubility of syringic acid correlates remarkably well with the size of their alkyl chains. However, this is not the case for larger hydrotrope concentrations, where 1,2-alkanediols are found to perform, in general, better than 1,n-alkanediols. These seemingly contradictory findings are reconciled using theoretical and experimental techniques, namely the cooperative model of hydrotropy and chemical environment probes (Kamlet-Taft and pyrene polarity scales). It is found that the number of hydrotropes aggregated around a solute molecule does not increase linearly with the apolar volume of the former, reaching a maximum instead. This maximum is discussed in terms of competing solute-hydrotrope and hydrotrope-hydrotrope interactions. The results suggest that hydrotrope self-aggregation is more prevalent in 1,n-alkanediols, which negatively impacts their performance as hydrotropes. The results reported in this work support the cooperative model of hydrotropy and, from an application perspective, show that hydrotropes should be designed taking into consideration not only their apolar volume but also their ability to stabilize their self-aggregation in water, which negatively impacts their performance as solubility enhancers.


Assuntos
Água , Solubilidade , Soluções/química , Água/química
11.
J Chromatogr A ; 1666: 462859, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124362

RESUMO

Countercurrent and centrifugal partition chromatography are techniques applied in the separation and isolation of compounds from natural extracts. One of the key design parameters of these processes is the selection of the biphasic solvent system that provides for the adequate partitioning of the solutes. To address this challenging task, the fully predictive Conductor-like Screening Model for Real Solvents (COSMO-RS) and the semi-predictive Non-Random Two-Liquid Segment Activity Coefficient (NRTL-SAC) model were applied to estimate the partition coefficients (K) of four model phenolic compounds (vanillin, ferulic acid, (S)-hesperetin and quercetin) in different solvent systems. Complementing the experimental data collected in the literature, partition coefficients of each solute in binary, or quaternary, solvent systems were measured at 298.2 K. Higher deviations from the experimental data were obtained using the predictive COSMO-RS model, with an average RMSD (root-mean-square deviation) in log(K) of 1.17 of all four solutes (61 data points), providing a satisfactory quantitative description only for the systems containing vanillin (RSMD = 0.57). For the NRTL-SAC model, the molecular parameters of the solutes were initially calculated by correlating a set of K and solubility (x, in mole fraction) data (16 partition coefficients and 44 solubility data points), for which average RMSD values of 0.07 and 0.41 were obtained in log(K) and log(x), respectively. The predictions of the remaining log(K) data (45 partition coefficients) resulted in an average RMSD of 0.43, suggesting that the NRTL-SAC model was a more reliable quantitative solvent screening tool. Depending on the amount of available solubility and partition data, both models can be valuable alternatives in the preliminary stages of solvent screening destined to select the optimal mobile and stationary phases for a given separation.


Assuntos
Distribuição Contracorrente , Cromatografia Líquida/métodos , Distribuição Contracorrente/métodos , Solubilidade , Solventes/química
12.
Eur J Pharm Sci ; 156: 105583, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045368

RESUMO

Aiming to contribute to drug pre-formulation, new eutectic mixtures were developed. Thymol, coumarin, or quaternary ammonium chlorides as excipients, were combined with the active pharmaceutical ingredients (APIs) acetylsalicylic acid, acetaminophen, ibuprofen, ketoprofen, or lidocaine. Their solid-liquid equilibrium (SLE) binary phase diagrams were measured to study eventual phase separation between the compounds, preventing manufacturing problems, and to study the molecular interactions between the APIs and ionic or non-ionic excipients. The Conductor-like Screening Model for Real Solvents (COSMO-RS) capability to predict the SLE of mixtures containing non-ionic excipients was further evaluated. COSMO-RS gives a good quantitative description of the experimental SLE being a tool with great potential in the screening of eutectic systems containing APIs and non-ionic excipients. While thymol presents strong interactions with the APIs, and consequently negative deviations to thermodynamic ideality, systems containing coumarin follow a quasi-ideal behavior. Regarding the ionic excipients, both choline chloride and the tetraalkylammonium chlorides are unable to establish relevant interactions with the APIs, and no significant negative deviations to ideality are observed. The liquefaction of the APIs here studied is favored by using non-ionic excipients, such as thymol, due to the strong interactions it can establish with the APIs.


Assuntos
Excipientes , Ibuprofeno , Composição de Medicamentos , Solventes , Termodinâmica
13.
ChemSusChem ; 13(18): 4916-4921, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672893

RESUMO

The mechanism of formation of betaine-based deep eutectic solvents (DES) is presented for the first time. Due to its polarity unbalance, it was found that betaine displays strong negative deviations from ideality when mixed with a variety of different organic substances. These results pave the way for a comprehensive design of novel deep eutectic solvents. A connection to biologically relevant systems was made using betaine (osmolyte) and urea (protein denaturant), showing that these two compounds formed a DES, the molecular interactions of which were greatly enhanced in the presence of water.

14.
Chem Commun (Camb) ; 56(52): 7143-7146, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32462150

RESUMO

A recent proposal attributes the origin of hydrotropy to the water-mediated aggregation of hydrotrope molecules around the solute. Experimental evidence for this phenomenon is reported for the first time in this work, using 1H-NMR. A new computational technique to quantify apolarity is introduced and is used to show that apolarity of both solute and hydrotrope is the driving force of hydrotropy.

15.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230976

RESUMO

Replacing synthetic surfactants by natural alternatives when formulating nanoemulsions has gained attention as a sustainable approach. In this context, nanoemulsions based on sweet almond oil and stabilized by saponin from Quillaja bark with glycerol as cosurfactant were prepared by the high-pressure homogenization method. The effects of oil/water (O/W) ratio, total surfactant amount, and saponin/glycerol ratio on their stability were analyzed. The formation and stabilization of the oil-in-water nanoemulsions were analyzed through the evaluation of stability over time, pH, zeta potential, and particle size distribution analysis. Moreover, a design of experiments was performed to assess the most suitable composition based on particle size and stability parameters. The prepared nanoemulsions are, in general, highly stable over time, showing zeta potential values lower than -40 mV, a slight acid behavior due to the character of the components, and particle size (in volume) in the range of 1.1 to 4.3 µm. Response surface methodology revealed that formulations using an O/W ratio of 10/90 and 1.5 wt% surfactant resulted in lower particle sizes and zeta potential, presenting higher stability. The use of glycerol did not positively affect the formulations, which reinforces the suitability of preparing highly stable nanoemulsions based on natural surfactants such as saponins.


Assuntos
Emulsões/química , Nanoestruturas/química , Casca de Planta/química , Quillaja/química , Saponinas/química , Tensoativos/química , Difusão Dinâmica da Luz , Glicerol/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Óleos de Plantas/química , Água/química
16.
J Phys Chem B ; 124(20): 4174-4184, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32325002

RESUMO

The criterion to distinguish a simple eutectic mixture from a deep eutectic solvent (DES) lies in the deviations to thermodynamic ideality presented by the components in the system. In this work, the current knowledge of the molecular interactions in types III and V DES is explored to liquefy a set of three fatty acids and three fatty alcohols, here used as model compounds for carboxyl and hydroxyl containing solid compounds. This work shows that thymol, a stronger than usual hydrogen bond donor, is able to form deep eutectic solvents of type V with the fatty alcohols studied. This is particularly interesting, since these DES formed are hydrophobic. Regarding type III DES, the results suggest that the prototypical DES hydrogen bond acceptor, cholinium chloride, is unable to induce negative deviations to ideality in the model molecules studied. By substituting choline with tetramethylammonium chloride, it is shown that the choline hydroxyl group is responsible for the difficulty in forming choline-based deep eutectic solvents and that its absence induces strong negative deviations to ideality in the alkylammonium side. Finally, it is demonstrated that tetrabutylammonium chloride acts as a chloride donning agent, causing significant negative deviations to ideality in both fatty acids and alcohols and leading to the formation of deep eutectic solvents of type III.

17.
Molecules ; 24(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614959

RESUMO

It was recently shown that tetramethylammonium chloride presented negative deviations to ideality when mixed with tetraethylammonium chloride or tetrapropylammonium chloride, leading to a strong decrease of the melting points of these salt mixtures, in a behavior akin to that observed in the formation of deep eutectic solvents. To better rationalize this unexpected melting point depression between two structurally similar compounds devoid of dominant hydrogen bonding capability, new solid-liquid equilibria data for tetramethylammonium-based systems were measured and analyzed in this work. Molecular dynamics was used to show that the strong negative deviations from ideality presented by these systems arise from a synergetic share of the chloride ions. A transfer of chloride ions seems to occur from the bigger cation in the mixture (which possesses a more disperse charge) to the smaller cation (tetramethylammonium), resembling the formation of metal-chloride complexes in type I deep eutectic solvents. This rearrangement of the charged species leads to an energetic stabilization of both components in the mixture, inducing the negative deviations to the ideality observed. The conclusions presented herein emphasize the often-neglected contribution of charge delocalization in deep eutectic solvents formation and its applicability toward the design of new ionic liquid mixtures.


Assuntos
Complexos de Coordenação/química , Líquidos Iônicos/química , Solventes/química , Cátions/química , Cloretos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos de Amônio Quaternário/química , Ureia/química
18.
J Phys Chem B ; 123(42): 8954-8969, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31525048

RESUMO

The present work describes an experimental study and the thermodynamic modeling for the solid-liquid phase diagram of an ionic liquid quaternary system constituted by hexafluorophosphate ([PF6]-) as the common anion and by 1-methyl-3-propylimidazolium ([C3mim]+), 1-methyl-1-propylpyrrolidinium ([C3mpyrr]+), 1-methyl-3-propylpyridinium ([C3mpy]+), or 1-methyl-1-propylpiperidinium ([C3mpip]+) as the cations. The Modified Quasichemical Model was used to model the liquid solution, and the Compound Energy Formalism was used for the relevant solid solutions. The liquidus projections of the four ternary subsystems (1) [C3mim][PF6]-[C3mpip][PF6]-[C3mpyrr][PF6], (2) [C3mpy][PF6]-[C3mpip][PF6]-[C3mpyrr][PF6], (3) [C3mpip][PF6]-[C3mpy][PF6]-[C3mim][PF6], and (4) [C3mpyrr][PF6]-[C3mpy][PF6]-[C3mim][PF6] were predicted using a standard symmetric (for systems 3 and 4) or asymmetric (for systems 1 and 2) interpolation method. In order to test the accuracy of the thermodynamic model, two isoplethal sections were experimentally measured in each of the four ternary systems using differential scanning calorimetry. Overall, agreement was very satisfactory, not requiring fitting of any ternary interaction parameters for the liquid solution model. In each of the four calculated ternary liquidus projections, the region of composition corresponding to room temperature ionic liquid mixtures was determined. The global minimum of the liquidus temperature in the complete composition space was calculated to be about -16 °C, with a mole percentage composition of (33.8% [C3mpyrr][PF6] + 33.9% [C3mpy][PF6] + 32.3% [C3mim][PF6]).

19.
Phys Chem Chem Phys ; 21(38): 21626-21632, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31549125

RESUMO

Recently, combinations of two (or more) ionic liquids, known as ionic liquid mixtures, have become popular and have a broad range of applications. However, the fundamental knowledge on the molecular interactions that exist in ionic liquid mixtures is far from being understood. In this work, the experimental measurement of the water activity coefficient and computational modelling using Conductor-like Screening Model for Real Solvent (COSMO-RS) were carried out to get an insight into the molecular interactions that are present in ionic liquid mixtures in aqueous solution. The results show that the combination of two ionic liquids of different basicity in aqueous solution allows fine tuning of the water activities, covering a wide range of values that could replace several pure fluids. This is an important feature resulting from the unexpected ion speciation of the ionic liquid mixtures in aqueous solution.

20.
Phys Chem Chem Phys ; 21(33): 18278-18289, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31396606

RESUMO

There is a lack of fundamental knowledge on deep eutectic solvents, even for the most extensively studied mixtures, such as the mixture of cholinium chloride and urea, which prevents a judicious choice of components to prepare new solvents. The objective of this work is to study and understand the fundamental interactions between cholinium chloride and urea that lead to the experimentally observed melting temperature depression. To do so, the structure of urea was strategically and progressively modified, in order to block certain interaction centres, and the solid-liquid equilibrium data of each new binary system was experimentally measured. Using this approach, it was concluded that the most important interaction between cholinium chloride and urea occurs through hydrogen bonding between the chloride anion and the amine groups. Any blockage of these groups severely hampers the melting point depression effect. Raman spectroscopy and DFT calculations were utilized to study in more detail this hydrogen bonding and its nuances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA