Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0283806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37014882

RESUMO

Muscle wasting is one of the main characteristics of cachexia associated with cancer and other chronic diseases and is often exacerbated by antineoplastic agents. Increased oxidative stress is associated with muscle wasting, along with depletion of glutathione, the most abundant endogenous antioxidant. Therefore, boosting endogenous glutathione has been proposed as a therapeutic strategy to prevent muscle wasting. Here, we tested this hypothesis by inactivating CHAC1, an intracellular glutathione degradation enzyme. We found CHAC1 expression is increased under multiple muscle wasting conditions in animal models, including fasting, cancer cachexia, and chemotherapy. The elevation of muscle Chac1 expression is associated with reduced glutathione level. CHAC1 inhibition via CRSPR/Cas9 mediated knock-in of an enzyme inactivating mutation demonstrates a novel strategy to preserve muscle glutathione levels under wasting conditions but fails to prevent muscle wasting in mice. These results suggest that preserving intracellular glutathione level alone may not be sufficient to prevent cancer or chemotherapy induced muscle wasting.


Assuntos
Caquexia , Neoplasias , gama-Glutamilciclotransferase , Animais , Camundongos , Caquexia/prevenção & controle , Caquexia/metabolismo , Glutationa/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , gama-Glutamilciclotransferase/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 322(2): H234-H245, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919456

RESUMO

Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold-stressed and must use brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as ß-adrenergic stimuli are primary drivers of not only lipolytic but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow-fed animals, which was blunted in animals fed a high-fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, whereas animals displayed less hypertrophy and a trend toward worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high-fat-fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.NEW & NOTEWORTHY Thermoneutral housing conditions cause rapid and reversible changes in mouse heart rate and blood pressure. Despite dramatic reductions in heart rate and blood pressure, thermoneutrality reduced the compensatory hypertrophic response in a pressure overload heart failure model compared with room temperature housing, and ACE inhibitors were still efficacious to prevent pressure overload-induced cardiac remodeling. The effects of thermoneutrality on heart rate and blood pressure are abrogated in the context of diet-induced obesity.


Assuntos
Regulação da Temperatura Corporal , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Abrigo para Animais/normas , Animais , Doenças Cardiovasculares/metabolismo , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA